
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 91

Data Storage in Cloud: A View of Cuckoo Hashing
1Prof. Yathish Aradhya B C, 2Ms. Ashwini Shekar, 3Mrs. Chaithra S, 4Ms. Sindhu Y Shirur

Assistant Professor CS&E, M.Tech 4th sem CS&E

KIT, Tiptur-572201

Abstract-Cloud computing as an emerging technology trend is
expected to reshape the advances in information technology.
As the data produced by individuals and enterprises that need
to be stored and utilized are rapidly increasing. As sensitive
cloud data may have to be encrypted before outsourcing,
service based on plaintext keyword search. Search is a
fundamental and powerful tool widely used in plaintext
information retrieval the problem is particularly challenging,
we address two fundamental issues in a cloud environment:
privacy and efficiency. the privacy-preserving guarantee of the
proposed mechanism under rigorous security treatment.
Among various multi keyword semantics, we choose the
efficient similarity measure of “coordinate matching”, i.e., as
many matches as possible, to capture the relevance of data
documents to the search query. Among all these things data
collision will happens during storage in hashing schemes. In
hashing with chaining with a table of size m =αn, whereα >0 is
a constant, the worst-case search time is equal to the length of
the longest chain. Cuckoo hashing is a new hashing method
with very interesting worst-case properties. it hashes n data
points into two tables of size m in expected time O(n) as long
as m/n >1 + ε1 for some ε1 > 0. Once the table is constructed,
each search takes at most two probes. Due to the hash
collisions, the cuckoo hashing suffers from endless loops and
high insertion latency, even high risks of re-construction of
entire hash table. In order to address these problems, we
propose a cost-efficient cuckoo hashing scheme, called Min
Counter. The idea behind this is to alleviate the occurrence of
endless loops in the data insertion by selecting unbusy
kicking-out routes. Counter selects the “cold” rather than
random, buckets to handle hash collisions.

Keyword-cuckoo hashing, cloud storage, data insertion and
query, key word search, lock free, kick out, mincounter.

I. INTRODUCTION

Cloud computing refers to both the applications delivered
as services over the Internet and the hardware and
systems software in the data centers that provide those
services. The services themselves have long been referred
to as Software as a Service (SaaS). Some vendors use
terms such as IaaS (Infrastructure as a Service) and PaaS
(Platform as a Service) to describe their products, but we
eschew these because accepted definitions for them still
vary widely. The line between “low-level”infrastructure
and a higher-level “platform”is not crisp. We believe the
two are more alike than different, and we consider them
together. Similarly, the related term “grid computing,”
from the high-performance computing community,
suggests protocols to offer shared computation and
storage over long distances, but those protocols did not
lead to a software environment that grew beyond its

community. The data center hardware and software is
what we will call a cloud. When a cloud is made available
in a pay-as you- go manner to the general public, we call
it a public cloud; the service being sold is utility
computing. We use the term private cloud to refer to
internal data centers of a business or other organization,
not made available to the general public, when they are
large enough to benefit from the advantages of cloud
computing(1).

Considering the large number of on-demand data users
and huge amount of outsourced data files in the cloud,
this problem is particularly challenging as it is extremely
difficult to meet also the requirements of practical
performance and acceptable system usability. As textual
information is ubiquitous in data management systems,
many applications have an increasing need to support
similarity keyword searches on data collections, i.e., the
discovery of similar keywords with respect to a given
distance measure(2).

A typical cloud application would have a data owner
outsourcing data services to a cloud, where the data is
stored in a keyword-value form, and users could retrieve
the data with several keywords. Since a cloud is operated
by a third party, there have been some concerns over the
possible privacy leaks that may occur. Such concerns
have led researchers to propose various techniques to
protect user privacy. An improvement based on our
previous work, where the cloud can return a certain
percentage of matched files to the user. This is motivated
by the fact that under certain cases, a user may only be
interested in a certain percentage of matched files. By
returning a smaller percentage of files, the
communication cost can be reduced(3).

 To enable ranked search for effective utilization of
outsourced cloud data under the aforementioned model,
our system design should simultaneously achieve security
and system design should simultaneously achieve security
and performance guarantees as follows.

• Multi-keyword Ranked Search: To design search
schemes which allow multi-keyword query and
provide result similarity ranking for effective
data retrieval, instead of returning
undifferentiated results.

• Privacy-Preserving: To prevent the cloud server
from learning additional information from the

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 92

dataset and the index, and to meet privacy
requirements specified in section III-B.

• Efficiency: Above goals on functionality and
privacy should be achieved with low
communication and computation overhead.

To efficiently achieve multi-keyword ranked search, we
propose to employ “inner product similarity” [4] to
quantitatively evaluate the efficient similarity measure
“coordinate matching”(4).

Similarity search has been widely studied in peer-to-peer
environments. In this paper, we propose the Bounded
Locality Sensitive Hashing (Bounded LSH) method for
similarity search in P2P file systems. Compared to the
basic Locality Sensitive Hashing (LSH), Bounded LSH
makes improvement on the space saving and quick query
response in the similarity search, especially for high-
dimensional data objects that exhibit non-uniform
distribution property. We present simple and space-
efficient Bounded-LSH to map non-uniform data space
into load-balanced hash buckets that contain approximate
number of objects. Load-balanced hash buckets in
Bounded-LSH, in turn, require less number of hash tables
while maintaining a high probability of returning the
closest objects to requests(5) .

Scatter storage (hash coding) techniques are used to
minimize the time required to enter and retrieve
information in tables. 'Rather similar techniques can be
used for internal tables, such as the symbol tables of
compilers and assemblers, and large files which are stored
on random-access devices such as disks or drums. Aim is
to describe the method for entering information so that
subsequent retrievals are very efficient. Suppose that each
item consists of an identifying name or key, which may
be regarded as an integer, and an associated value. If m
keys kx, -.- ,km are stored at addresses a(kl), . . . , a(km)
in a table T of length n _> m (i.e. T(a(ki)) = kl for i = 1, . .
. , m) and a key k is given, the problem is to determine
efficiently whether k is in T, and if so, to find a(k). In
order to compare the efficiency of different algorithms,
we count the number of fetches of elements of T, i.e.
probes, that they require(6).

 Hashing is one of the fundamental techniques used to
implement query processing operators such as grouping,
aggregation and join. This paper studies the interaction
between modern computer architecture and hash-based
query processing techniques. First, we focus on extracting
maximum hashing performance from super-scalar CPUs.
In particular, we discuss fast hash functions, ways to
efficiently handle multi-column keys and propose the use
of a recently introduced hashing scheme called Cuckoo
Hashing over the commonly used bucket-chained
hashing(7).

An accurate de_nition of concurrent programming
techniques in terms of hash tables requires an accurate
de_nition of a hash table, along with a set of operations
and the semantics of those operations. Consider a
standard open hash table, using chaining within buckets.
The hash table consists of an array of buckets, each
containing a pointer to the head of the linked list for that
bucket. Each bucket contains zero or more items in its
linked list chain. An item present in the hash table will
exist in the bucket corresponding to its hash value. [5, 6]
A hash table can support many dierent operations, and
any given application may need some subset of these.
Common hash table operations include insertion,
deletion, replacement, resizing, lookup, and moving an
item to a new key. This work will focus on two of those
operations: lookup and move. Lookup provides the only
read-only operation, and thus a comparison of concurrent
programming techniques that dierentiate readers and
writers must use the lookup operation in the readers(8).

 In order to support real-time queries, hashing-based data
structures have been widely used in constructing the
index due to constant-scale addressing complexity and
fast query response. Unfortunately, hashing-based data
structures cause low space utilization, as well as high-
latency risk of handling hashing collisions. Traditional
techniques used in hash tables to deal with hashing
collisions include open addressing, chaining and
coalesced hashing. Unlike conventional hash tables,
cuckoo hashing addresses hashing collisions via simple
“kicking-out” operations (i.e., flat addressing), which
moves items among hash tables during insertions, rather
than searching the linked lists. Architecture-conscious
hashing has demonstrated that cuckoo hashing is much
faster than the chaining hashing with the increase of load
factors. The cuckoo hashing makes use of d≥2 hash
tables, and each item has d buckets for storage. Cuckoo
hashing selects a suitable bucket for inserting a new item
and alleviates hash collisions by dynamically moving
items among their d candidate positions respectively in
hash tables. Such scheme ensures a more even
distribution of data items among hash tables than uses
only one hash function in conventional hash tables. Due
to the salient feature of flat addressing with constant-scale
complexity, cuckoo hashing needs to probe all hashed
buckets only once and obtains the query results. Even
probing at most d buckets in the worst case, the cuckoo
hashing guarantees constant-scale query time complexity
and constant amortized time for insertion and deletion
process, which is also considered by Rivest in. Cuckoo
hashing thus improves space utilization without the
increase of query latency. In order to implement data
structures of hash tables to adapt to concurrent hardware,
e.g., multiprocessor machines, efficient synchronization
of concurrent access to data structures is essential and

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 93

significant. More and more studies focus on proposing
concurrent hash tables. Hash-based data structures and
algorithms are currently a booming industry in the
Internet, particularly for applications related to
measurement, monitoring, and security. Hash tables and
related structures, such as Bloom filters and their
derivatives, are used billions of times a day, and new uses
keep proliferating. Indeed, one of the most remarkable
trends of the last five years has been the growing
prevalence of hash-based algorithms and data structures
in networking and other areas. At the same time, the field
of hashing, which has enjoyed a long and rich history in
computer science, has also enjoyed something of a
theoretical renaissance. Arguably, this burst of activity
began with the demonstration of the power of multiple
choices: by giving each item multiple possible hash
locations, and storing it in the least loaded, remarkably
balanced loads can be obtained, yielding quite efficient
lookup schemes. An extension of this idea, cuckoo
hashing, further allows items to be moved among its
multiple choices to better avoid collisions, improving
memory utilization even further(9).

Hash table based structures can support real-time query
efficiency, while unfortunately causing low space
utilization. Unlike general hashing design, cuckoo
hashing improves space utilization without loss of query
performance, due to its salient features of flat addressing.
The cuckoo hashing has constant-scale query complexity
via probing at most d locations in the worst case. In
practice, the conventional cuckoo hashing schemes, e.g. a
random-walk approach, suffer from intensive migration
operations among servers due to unpredictable random
selection. Repetitions and endless loops often occur in the
random-walk approach due to potential hash collisions(9).

II. RELATED WORK

In this section, we present the research background of the
cuckoo hashing scheme. The cuckoo hashing was
described in [26] as a dynamization of a static dictionary.
Cuckoo hashing leverages two or more hash functions for
handling hash collisions to mitigate the computing
complexity of using the linked lists of conventional hash
tables. An item x has two candidate positions to be
placed, i.e, h1(x) and h2(x), instead of only one single
position in cuckoo hashing scheme. A bucket stores only
one item and hash collisions can be decreased. For a
general lookup, we only probe whether the queried item
is in one of its candidate buckets. A hash collision occurs
when all candidate buckets of a newly inserted item have
been occupied. Cuckoo hashing needs to execute
“kicking-out” operations to dynamically move existing
items in the hashed buckets and select a suitable bucket
for the new item. The kicking-out operation is similar to
the behavior of cuckoo birds in nature, which kicks other

eggs or young birds out of the nest. In the similar manner,
the cuckoo hashing recursively IEEE Transactions on
Parallel and Distributed Systems (Volume: 28, Issue: 3,
March 1 2017) kicks items out of their buckets and
leverages multiple hash functions to offer multiple
choices and alleviates hash collisions. However, cuckoo
hashing fails to fully avoid hash collisions. An insertion
of a new item causes a failure and an endless loop when
there are collisions in all probed positions until reaching
the timeout status. To break the endless loop, an intuitive
way is to perform a full rehash if this rare incident occurs.
In practice, the expensive overhead of performing a
rehashing operation can be dramatically reduced by
taking advantage of a very small additional constant-size
space. Cuckoo hashing offers multiple, not one, hash
positions for an item and allows the items to move within
these hash positions. Additionally, the space overhead is
approximately 2n space units, which is similar to the
space overhead of binary search trees.

A. Hash function basics

A hash function with an n-bit output is expected to have
three minimal security properties. (In practice, a number
of other properties are expected, as well.)

1) Collision-resistance: An attacker should not be
able to find a pair of messages M 6= M0 such
that hash(M) = hash(M0) with less than about
2n=2 work.

2) Pre-image-resistance: An attacker given a
possible output value for the hash Y should not
be able to find an input X so that Y = hash(X)
with less than about 2n work.

3) Second pre-image-resistance: An attacker given
one message M should not be able to find a
second message, M0 to satisfy hash(M) =
hash(M0) with less than about 2n work.

A collision attack on an n-bit hash function with less than
2n=2 work, or a pre-image or second pre-image attack
with less than 2n work, is formally a break of the hash
function. Whether the break poses a practical threat to
systems using the hash function depends on specifics of
the attack (10).

B. Cuckoo Hashing

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 94

Figure : Example of item insertion to the cuckoo hashing

Cuckoo hashing is a dynamization of a static dictionary
described in. The dictionary uses two hash tables, T1 and
T2, of length r and two hash functions h1 , h2 : U → {
0,.....,r−1}. Every key x € S is stored in cell h1(x) of T1 or
h2(x) of T2, but never in both. Our lookup function is

 function lookup(x)

return T1[h1(x)] = x T2 [h2(x)] = x.

end;

C. Lock Free Concept

A lock-free (also called non-blocking) implementation of
a shared object guarantees that if there is an active thread
trying to perform an operation on the object, some
operation, by the same or another thread, will complete
within a finite number of steps regardless of other
threads’ actions. Lock free objects are inherently immune
to priority inversion and deadlock, and offer robust
performance, even with indefinite thread delays and
failures. Shared sets (also called dictionaries) are the
building blocks of hash table buckets. Several algorithms
for lock-free set implementations have been proposed.
However, all suffer from serious drawbacks that prevent
or limit their use in practice. Lock-free set algorithms fall
into two main categories: array based and list based.
Known array based lock-free set algorithms are generally
impractical. In addition to restricting maximum set size
inherently, they do not provide mechanisms for
preventing duplicate keys from occupying multiple array
elements, thus limiting the maximum set size even more,
and requiring excessive over allocation in order to
guarantee lower bounds on maximum set sizes (11).

III. DESIGN AND IMPLEMENTATION

Illustrates the practical operations, including item
insertion, query and deletion. Also, we give the
theoretical analysis of the size allocation of counters.

A. The Min Counter Architecture

Fig.2 The architecture of min Counter storage system

Min Counter supports a fast and cost-effective cuckoo
hashing scheme for data insertion. Due to the simplicity
and ease of use, Min Counter has the salient features of
high utilization, less data migration and less time
overheads. The summarized structure fits into the main
memory to improve overall performance. figure shows
the storage architecture of Min Counter.

We implement the Min Counter component as in the
DRAM. The metadata are in the form of key value pairs.
A key is the hashed value of a file ID and the value is the
correlated metadata. The hard disk at the bottom stores
and maintains the correlated files. The proposed Min
Counter scheme is compatible to existing systems, such
as the Hadoop Distributed File System (HDFS) and
General Parallel File System (GPFS).

Fig.3 The Data structure of mincounter.

B. The Min Counter Working Scheme

In order to alleviate the occurrence of endless loops in
cuckoo hashing, we improve the conventional cuckoo
hashing by allocating a counter for each bucket of hash
tables. We utilize the counters to record kicking-out times
occurring at buckets in history. When a hash collision
occurs in a bucket, the corresponding counter increases
by 1. If an item x is inserted into the hash tables without
the availability of empty candidate buckets, we choose
the bucket with the minimum counter to execute the
replacement. Particularly, if more than one counter has
the minimum, we choose the bucket with the minimum
number of hash tables by default. As shown, we take d =3
to give an example. When the item x is inserted into hash

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 95

tables, we first check the buckets of h1(x), h2(x) and
h3(x) in each hash table respectively to find an empty
bucket. Each candidate bucket of x is occupied by a, b, c
respectively (as shown in Figure 5(a)). Moreover, we
compare the counters of candidate buckets and choose the
minimum one, and further replace item c with x. In the
meantime, the counter of the bucket of h3(x) increases by
1 up to 19. The kicked-out item c becomes the one
needed to be inserted, and the insertion procedure goes
on, until an empty slot is found in hash tables. Min
Counter allows items to be inserted into hash tables to
improve the storage space efficiency, but fails to fully
address endless loops. we leverage an extra space to
temporarily store the insertion-failure items rather than
rehash the structure immediately. The viability of this
approach has also been established in, where the authors
show, through massiv analysis and simulations, that a
very small constant size extra space yields significant
improvements, dramatically reducing theinsertion failure
probabilities associated with cuckoo hashing and
enhancing cuckoo hashing’s practical viability in both
hardware and software. Some schemes also use the
similar mechanism with a stash. Due to the negligible
extra space, we construct a small hash table, in memory.
The insertion-failure items store in the table through a
random hash function for supporting operations in
expected constant time.

Find Collision(α , hin)

Finding a collision pair with lengths 1 and α, starting
from hin (20).

Variables:

1. α=desired length of second message.

2. A , B = lists of intermediate hash values.

3. q = a fixed “dummy" message used for getting the
desired length.

4. hin = the input hash value for the collision.

5. htmp = intermediate hash value used in the attack.

6. M(i) = the ith distinct message block used in the attack.

7. n = width of hash function output in bits.

Steps:

1. Compute the starting hash for the α-block message by
processing α- 1 dummy message blocks:

 htmp = hin.

 For i = 0 to α- 2:

 htmp = F(htmp, q)

2. Build lists A and B as follows:

 for i = 0 to 2n/2 - 1:

 A[i] = F(hin, M(i))

 B[i] = F(htmp, M(i))

3. Find i , j such that A[i] = B[j]

4. Return colliding messages (M(i), q||q||...||q||M(j)), and
the resulting intermediate hash F(hin , M(i)).

Work: α - 1 + 2n/2+1 compression function calls.

Insert (Item x, kickcount, exclude)
if DirectInsert(Item x) then

Return
end if
if kickcount ≤ MaxLoop then

FindMinCounter(x, exclude) → k
lock()
D[hk(x)] → y
x → D[hk(x)]

unlock()
C[hk(x)] ++
Insert(y, kickcount+1, k)
else

x→S[x]
end if

Delete(Item x)
i = 1
while i ≤d do

if (D[hi(x)] == x) then
Delete x
Return

end if
i ++

end while
j = 1

while j ≤M do
if (S[j] == x) then

Delete x
Return

end if
j ++

end while
Return Result

FindMinCounter(Item x, exclude)
k = 1, m = 1
min = INTMAX
while m≤ d do

if m! = exclude and C[hm(x)] ≤ min then
C[hm(x)] → min
m→k

end if
m++

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 96

end while
Return k /* find the minimum counter*/
A. Summary
Experimental results demonstrate Min Counter has the
advantages in terms of the utilization ratio of hash tables,
the total kicking out times and the time overheads. Min
Counter can efficiently improve the utilization of cuckoo
hash tables and decrease the rehash probability to
optimize the cloud computing system performance.
Meanwhile, it enhances experience of cloud users through
decreasing the total kicking-out times and operation time.

IV. CONCLUSION

We predict cloud computing will grow, so developers
should take it into account. Regardless of whether a cloud
provider sells services at a low level of abstraction like
EC2 or a higher level like App Engine, we believe
computing, storage, and networking must all focus on
horizontal scalability of virtualized resources rather than
on single node performance. In order to alleviate the
occurrence of endless loops, this paper proposed a novel
concurrent cuckoo hashing scheme, named Min Counter,
for large-scale cloud computing systems. The Min
Counter has the contributions to three main challenges in
hash based data structures, i.e., intensive data migration,
low space utilization and high insertion latency. Min
Counter takes advantage of “cold” buckets to alleviate
hash collisions and decrease insertion latency. Min
Counter optimizes the performance for cloud servers, and
enhances the quality of experience for cloud users.
Compared with state-of-the-art work, we leverage
extensive experiments and real-world traces to
demonstrate the benefits of Min Counter. We have
released the source code of Min Counter for public use in
Github at https://github.com/syy804123097/MinCounter.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.
Katz, A. Konwinski,G. Lee, D. Patterson, A.
Rabkin, I. Stoica, et al., “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[2] C. Wang, K. Ren, S. Yu, and K. M. R. Urs,
“Achieving usable and privacy-assured similarity
search over outsourced cloud data,”

[3] Q. Liu, C. C. Tan, J.Wu, and G.Wang, “Efficient
information retrieval for ranked queries in cost-
effective cloud environments,”

[4] [N. Cao, C. Wang, M. Li, K. Ren, and W. Lou,
“Privacy-preserving multi keyword ranked search
over encrypted cloud data,”

[5] Y. Hua, B. Xiao, D. Feng, and B. Yu, “Bounded lsh
for similarity search in peer-to-peer file systems,”

[6] R. P. Brent, “Reducing the retrieval time of scatter
storage techniques,”Communications of the ACM,

[7] M. Zukowski, S. H´eman, and P. Boncz,
“Architecture-conscious hashing,”workshop on Data
management on new hardware, 2006.

[8] J. Triplett, P. E. McKenney, and J. Walpole, “Scalable
concurrent hash tables via relativistic programming,”
ACM SIGOPS Operating Systems Review, vol. 44,
no. 3, pp. 102–109, 2010

[9] M. Mitzenmacher, “Some open questions related to
cuckoo hashing,”

[10] J. Kelsey and B. Schneier, “Second preimages on n-
bit hash functions for much less than 2 n work,”
Proc.

[11] M. M. Michael, “High performance dynamic lock-free
hash tables and list-based sets,” Parallel algorithms
and architectures,

[12] B. Marsh, F. Douglis, and P. Krishnan. Flash
memory file caching for mobile computers. In
Proceedings of the 27th Hawaii Conference on
Systems Science, Wailea, HI, Jan 1994.

[13] M. P. Mesnier and J. B. Akers. Differentiated storag
services. SIGOPS Oper. Syst. Rev., 45:45–53,
February 2011.

[14] LBA Scrambler: A NAND Flash Aware Data
Management Scheme for High-Performance Solid-
State Drives Chao Sun, Member, IEEE, Ayumi
Soga, Chihiro Matsui, Asuka Arakawa, and Ken
Takeuchi, Member, IEEE

[15] A Re-configurable FTL (Flash Translation Layer)
Architecture for NAND Flash based Applications
Chanik Park, Wonmoon Cheon, Yangsup Lee,
Myoung-Soo Jung, Wonhee Cho and Hanbin Yoon
SAMSUNG Electronics. Co., Ltd., KOREA

https://github.com/syy804123097/MinCounter

