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Abstract-We introduce a new algorithm for incremental 
construction of binary regression trees is presented, This 
algorithm is also called as an SAIRT ,adapts the induced model, 
when facing data streams involving unknown dynamics like 
gradual and abrupt function drift, this regression trees which 
also handles both symbolic and numeric attributes on this 
condition current regression methods need a careful 
configuration depending on the dynamics of the problem, the 
proposed algorithm may adapt to particular complete changes 
of the target underlying regression function, because it expands 
or prunes subtree and automatically adjust its internal 
parameters to improve a local performance measure in each 
node. The another parallel boosting trees is Gradient Boosted 
Regression Trees (GBRT) are the current state-of –the-art 
learning paradigm for machine learned web search ranking a 
domain notorious for very large data sets, In this paper We 
propose a never method for parallelizing the training of GBRT, 
Our techniques parallelizes the construction of the individual 
regression trees and operators using the master processor uses 
these to build one layer of regression trees.Since this approach 
is based on data partitioning, and requires a small amount of 
communication. 

Keywords—Ranking, Boosted, Boosted regression trees, 
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I. INTRODUCTION 

In a huge and potentially infinite volumes of data are often 
continuously generated by real-time system like 
management communications networks. Online transaction 
in the financial market or real industry. Scientific and 
engineering experiments, surveillance systems and other 
dynamic environments, producing data streams in order to 
achieve better productivity learning algorithms are able to 
construct models from these data containing the hidden 
underlying relations between the independent feature and 
the dependent one. Traditional learning algorithms can be 
executed in batch mode in order to obtain models 
representing relations of data. When Traditional learning 
algorithm are gradually changes, When dealing with 
dynamic data streams are derived from complex 
algorithms, the underlying relations between variables, 
may change over time, these changes will not always occur 
with the same speed. Sometimes they are faster, and others 
are slower, when changes occur will also occur partially or 
totally. 

This can be illustrated making use of a simple univariate 
function as the underlying relation to be learned. Suppose 
that the initial function in the data stream is a straight line. 
After sometime the function moves up by incrementing its 
interception in some small this process is repeated several 
times until the function reaches the final position. A well 
known technique to learn models in these conditions is to 
forget past examples and take into account new data, 
updating the model accordingly, with regards to the 
forgetting mechanism; learning algorithm may use local or 
global windows, with fixed or adaptive size. Windows 
contain the information about recent data from data stream. 
Since our proposal is an incremental regression tree, each 
branch from root of the tree to a leaf Represents a region of 
the function. The purpose of the presented method called 
SAIRT (self Adaptive Induction of regression tree is deal 
with tasks involving unknown dynamics. and also its deals 
with a learning algorithms. which leaf maintains a local 
window. 

In this parallel boosted regression tress for web search 
ranking. It’s a world wide web from an initial experiment 
at CERN to a global phenomenon. In this time, web search 
engines have come to play an important role in how users 
access the internet and have seen tremendous advances, a 
crucial part of a search engine is the ranking function, 
which order to retrieves documents according to decreasing 
relevance to the query. Recently web search ranking has 
been recognized as a supervised machine learning problem. 
Where each query-document pair is represented by a high-
dimensional feature vector and its label indicates the 
documents degree to relevance to query. In GBRT is 
angularly defines the current states of the art. Due to the 
increasing amount of available data and the ubiquity of 
multicourse and clouds, there is increasing interest in 
parallelizing machine learning algorithms. In this paper, we 
take the opposite approach and parallelize the construction 
of individual weak learners. 

In our approach, the algorithm works step by step by 
constructing one layer of the regression tree at a time. One 
layer of the regression tree at a time, one processor is 
designated the master processor, and the others are the 
workers, the data which are portioning to the weaker, at 
each steo the workers compress their portion of the data 
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into small histograms and send this histograms to the 
master, its then communicates this layer to the workers, 
which allows them to compute histograms for the 
construction of subsequent lays. The constructing steps 
when a predefined depth is reached. This master-workers 
approach with bounded communication has several 
advantages, 

1. It can be generalized to multicourse, shared memory 
machines, clusters and clouds with relatively little efforts, 

2. The data is portioned among users. 

II. RELATED WORK 

In a traditional task of stationary regression learning (i.e., 
approximation of a function from a static database) several 
algorithms have been provided, construction of regression 
models from a stream of data in which different unknown 
dynamics may occur have received less attention from the 
community. 

On the other hand, the field of concept learning on data 
streams has been an effervescent area in the recent past, 
even when changes are present. The works by Domingo’s 
and Hulten and Nunez˜ et al. are notables when dealing 
with dynamic data streams for a classification. The 
following paragraphs try to Resume the current state of the 
art in the field of regression induction from dynamic data 
streams by remarking on the most important characteristics 
(from our point of view) of algorithms 

That faces these problems: 

1) Memory management 

2) Adaptation of internal parameters. 

Another interesting aspect is the management of the 
internal parameters for dealing with real applications. This 
allows the algorithm to learn from different conditions 
without user action. In this paper, present a sample of 
previous work on parallel machine learning most related to 
our work. The related work falls into three categories: 

1) Parallel decision trees 

2) Parallelization of boosting 

3) Parallelization of web search ranking using other 
approaches such as bagging. 

Parallel decision tree algorithms have been studied for 
many years, and can be grouped into two main categories: 

1) task-parallelism 

2) data-parallelism 

Algorithms in the first category has divide the tree into 
sub-trees, which are constructed on deferent workers, e.g. 
after the first node is split, the two remaining sub-trees are 
constructed on separate workers. There are two downsides 
of this approach. First, each worker should either have a 

full copy of the data or large amount of data has to be 
communicated to workers after each split. Therefore, for 
large data sets, especially if the entire data set doesn’t fit in 
each worker’s memory, this scheme would likely provide 
slowdown rather than speedup. Second is and a small trees 
are unlikely to get much speedup, since they cannot utilize 
all the available workers. 

This algorithm is most similar to BenHaim and YomTov’s 
work on parallel approximate construction of decision trees 
for classification. Our histogram methods were largely 
inspired by their publication. However, our approach diers 
in several ways. First, we are using a regression trees 
instead of classification requiring us to interpolate 
relevance scores within histogram bins instead of 
computing one histogram per label. Further, our method 
explicitly parallelizes gradient boosted regression trees 
with a fixed small depth. This pGBRT algorithm obtains 
more speed-ups on larger data sets, as the parallel scan of 
the data to construct histograms takes a larger fraction of 
the overall running time. 

Finally, multiple approaches have been applied bagging to 
web-search ranking. Recent work by Pavlov and Brunch 
[24] uses bagged boosted regression trees. Bagging is 
inherently parallel but requires additional computation time 
as it is averaged over many independent runs (Pavlov and 
Brunk used a total of M = 300,000 trees of depth d = 12 in 
the Yahoo Learning to Rank Challenge). Usually, the 
choice between bagging and boosting is based on desired 
learning paradigm rather than computational resources. 

III. DESCRIPTION 

3.1. SAIRT learning algorithm 

PROCEDURE SAIRT (tree, example) 
Node = Root (tree) 
Visited nodes = {node} 
WHILE! Is Leaf (node) AND Incoherent 
(node) DO node = Next Child (node, 
example) 
Visited nodes = visited nodes ∪ {node} ENDWHILE 

IF Is Leaf (node) THEN - node is called leaf – 
Store (example, leaf) 
Update Statistics ({leaf}) 
Node = Try Expansion (leaf) 
IF Is Leaf (node) THEN AdaptLocalWindow ({leaf}) 
ENDIF 
ELSE–node is not coherent– 
Drop (example, node) 
AdaptLocalWindow (Degraded Leaves (node)) 
Leaf = Prune (node) 
Update Statistics ({leaf}) 
Try Expansion (leaf) 
ENDIF 
Update Statistics (visited nodes) 
SAIRT is an algorithm for incremental induction of bi-nary 
regression trees, which also supports adaptability to 
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gradual, and abrupt function drift, the handling of symbolic 
and numeric attributes, and robustness to noise and virtual 
drift in data. Depending on the dynamics of the problem 
this method expands or prunes sub trees and adjusts its 
internal parameters to improve the local performance 
measure in each node. SAIRT develops a partial memory 
management; that is to say, it selectively forgets examples 
and stores the remaining ones in local windows present in 
the leaves of the tree. This method is designed to be used 
under unknown dynamics, and thus it is able to 
automatically adapt its parameters for each problem. 
3.2. Gradient Boosted Regression Trees 

Input: data set D = {(xi, yi)}n
i=1, Parameters: α, m, d 

Initialization: ri = yi, ∀ i 

C(·) = 0 
for t = 1 to m do 
gt ← O({(xi, ri}) 
C(·) ← C(·) + αgt(·) 
for i = 1 to n do 
ri ← − ∂ 

 

∂ht(xi)  
end for  
end for  
return C  
In traditional GBRT algorithm, spends the majority of its 
computation time evaluating split points during the 
creation of regression tree. we speed up and parallelize this 
process by summarizing label and feature value 
distributions using histograms. Here we describe how a 
single split, evaluated on the data that reaches the particular 
node, is computed using this histograms. 
3.3 Parallel cart algorithm Parameter: maximum depth tree 
← unlabeled node 

while tree depth < maximum depth do for each feature do 
Instantiate an empty histogram at each leaf for each 
worker do Initiate non-blocking receive for worker’s his-
tograms end for while non-completed receives do wait for 
some receive to complete merge received histograms at 
leaves end while update best splits for each leaf end for 
send next layer of leaves to each worker 

end while 

return tree 

3.4 Parallel CART worker 

Input: data set D={xi,ri}in=1 

Parameter: maximum depth 

Tree←unlabeled node 

While tree depth < maximum 
depth do Navigate training data D 
to leaf nodes v For each feature f 
do merge(hvi,([xi]f,1,ri)) 

end for 

initiate non-blocking send for histograms from all 
leaves end for 

receive next layer of leaves from 
master end while 

In our algorithm we have used master processor and P 
workers we assume the data divided into P disjoint subset 
and stored in different physical locations in each worker 
can access one of these locations. Then the master 
processor creates the regression trees in layer by layer at 
each iteration a new layer is constructed. By using 
histograms the worker compresses its share of the data and 
it sends to the master processor. Then the master merges 
the histograms and uses them. We select the best splits for 
each leaf node, their constructing new layer. then this new 
layer sends to the worker. Then worker constructs the 
histograms for the new layer. So the communication 
consists entire of the worker sending histograms to the 
master and master sending the new layer of the tree since 
the depth of the regression tree is small. 

IV. EXPERIMENTAL RESULTS 

In this section presents the results of the proposed 
algorithm when facing different kinds of problems, from 
classic (stationary) datasets to data streams where the 
underlying knowledge changes. To compare results, we 
have chosen several well-known algorithms based on 
different techniques on ma-chine learning and data mining: 
M5’ [32] is a regression tree-based learning algorithm that 
extends M5 and is used when facing problems without 
changes in the function to induce; IBk is a nearest 
neighbour algorithm used for both classification and 
prediction tasks; Linear-Regression tries to obtain a linear 
model to approximate the underlying function; finally, 
MLP is a multilayer perception-based algorithm. We used 
a suite for data mining called Weka [32] to obtain results 
with the algorithms described above. In addition, the 
algorithm FIRT-DD, a regression tree-based algorithm able 
to ex-tract knowledge from time-changing data streams, 
was also used in the comparisons of this section. Otherwise 
stated, default parameters for all methods are used on all 
the experiments. For each experiment, we will collect 
measurements of error rate (specifically, Root Mean 
Squared Error, RMSE), memory consumption and time 
devoted to processing one example. With the aim of 
knowing when SAIRT reacts to changes in functions when 
there are not (false alarms), an additional metric, called 
estimated rate of function change (erfc), is collected for 
each experiment. It is calculated with the arrival. In this 
section, we describe the empirical evaluation of our 
algorithm using two 
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Fig 1:ERR and NDCG for yahoo set 1(top) and yahoo 
set 2 (bottom) on parallel (pGBRT) and exact (GBRT) 
implementation with various tree depths d.The NDCG 

plot for set 1 (top right) shows nicely that pGBRT with a 
tree depth d+1 leads to results similar to the exact 

algorithm with depth d. 

Table 1: Statistics of the yahoo competition and Microsoft learning to rank data set 

 
 

Yahoo 
LTRC   MSLR MQ2008 Folds   

TRAIN Set 1 Set 2 F1 F2 F3 F4 F5 

# Features 700 700 136 136 136 136 136 
       722,60 
# Documents 473,134 34,815 723,412 716,683 719,111 718,768 2 
# Queries 19,944 1266 6000 6000 6000 6000 6000 
Avg # Doc per       119.43 
Query 22.723 26.5 119.569 118.447 118.852 118.795 4 
        
TEST Set 1 Set 2 F1 F2 F3 F4 F5 
       235,25 
# Documents 165,660 103,174 241,521 241,988 239,093 242,331 9 
# Queries 6983 3798 6000 6000 6000 6000 6000 
Avg # Doc per       116.62 
Query 22.723 26.165 119.761 119.994 118.547 120.167 95 

 
publicly available web search Ranking data compilations. 
We see impressive speedups on both shared memory and 
distributed memory machines. In ad-dition, we found that, 
while the individual regression trees are weaker using our 
approximate parallel algorithm (as expected), with 
appropriate parameter settings, the final regressor did not 
lose much accuracy. In some cases, our parallel 
implementation generates a regressor that is just as good 
as the sequential implementation, while in others, it was 
slightly less accurate. We conducted experiments on a 
parallel shared memory machine and a distributed 
memory cluster. The shared memory machine is an AMD 
Opteron 1U-A1403 48-core SMP machine with four 
sockets contain-ing AMD Opteron 6168 Magny Cours 
processors. The distributed memory cluster consists of 8-
core, Nehalem based computing nodes running at 
2.73GHz. They each have 24GB of RAM. For our 
experiments, we used 6 of these nodes (with a total of 48 
cores). For our empirical evaluation, we use the two data 
sets from Yahoo! Inc.’s Learning to Rank Challenge 2010 
[9], and the five folds of Microsoft’s LETOR [21] dataset. 

Each of these sets come with predefined training 
invalidation and test sets. Table 1 summarizes the 
statistics of these data sets. The above Figure shows the 
ERR and NDCG of the parallel implementation 
“pGBRT” and of the exact algorithm “GBRT” as a 
function of the number of boosting iterations on the 

Yahoo Set 1 and 2 under varying tree depths. For the 
parallel implementation, we used b = 25 bins for Set 2 
and b = 50 for the much larger Set 1. The step-size was 
set to α = 0.06 in both cases. As expected, the histogram 
approximation reduces the ac-curacy of the weak learners. 
Consequently, with equal depth and iterations, pGBRT 
has lower ERR and NDCG than the exact GBRT. 
However, we can compensate for this effect by either 
running additional iterations or increasing the depth of the 
regression trees. In fact, it is remarkable that on Set 1 
(Figure 1) the NDCG curves of pGBRT with d = 6 and d 
= 5 align almost perfectly with the curves of GBRT with 
d = 5 and d = 4, respectively. For Set 2 the lines are 
mostly shifted by approximately 200 iterations. The 
additional computation required by either of these 
approaches (increasing d or m) is more than compensated 
for by the better performance of the 

histogram method since it does not require feature sorting. 
(For small d ≤ 10 – while the computation is dominated 
by while the computation is dominated by computation – 
the running time increases roughly linearly with 
increasing d. On the Yahoo Set 1, training pGBRT with m 
= 6000 trees on 16 CPUs and depth d=5 was only a factor 
1.34 slower than d = 4 and a depth of d = 6 slowed the 
training time down by a factor of 1.75. ) 

V. CONCLUSION 
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As far as we know, there is no other algorithm able to 
construct and adapt regression trees to data streams whose 
underlying function changes over time as well as having 
other dynamics present without an a-priori 
parameterization. In order to face a wide spectrum of 
tasks, systems and users, we think that learning 
algorithms should be as simple to use as possible and that 
the models generated should be understandable. This has 
been a principal motivation in the design and evaluation 
of the SAIRT algorithm. The way in which the knowledge 
is represented helps to understand both the patterns 
discovered in each moment and the problem itself. We 
have presented a parallel algorithm for training gradient 
boosted regression trees. To our knowledge, this is the 
first work that explicitly parallelizes the construction of 
regression trees for the purpose of gradient boosting. We 
have shown that our approach provides impressive 
speedups on several large-scale web-search data sets 
without any significant sacrifice in accuracy. 

Our method applies to multicore shared-memory systems as 
well as to distributed setups in clusters and clouds. Since 
each processor only needs enough physical memory for its 
partition, and the communication is strictly bounded, this 
allows the training of machine-learned rankers on web-scale 
data sets even with standard off-the-shelf computer hardware. 
We are planning to extend this work in several directions. 
First, we think we can further increase the efficiency and 
performance by eliminating the master and merging 
histograms pair wise among workers. In addition to freeing 

the master processor for useful work, this approach would 
further overlap computation and communication. Second, 
we are planning to run experiments with more workers on 
clouds to gauge the of this approach on non-dedicated 
machines. Third, we intend to investigate more aggressive 
speed vs. accuracy trade in the computation of the splits 
based on stochastic approximations of the histograms. 
Given the current trend towards multi core processors, 
parallel computing and larger data sets, we expect our 
algorithm to increase in both relevance and utility in the 
foreable future. 
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