
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 195

Construction of Regression Trees by Using
SAIRT and GBRT

Ashwini M1, Kavyashree C M2, Reshma M S3,Sahana C M4

Niveditha N M5
, 1,2,3,4 UG Students, 5 Assistant professor

Department of Computer Science and Engineering

BGS Institute of Technology, BG Nagar

Abstract-We introduce a new algorithm for incremental
construction of binary regression trees is presented, This
algorithm is also called as an SAIRT ,adapts the induced model,
when facing data streams involving unknown dynamics like
gradual and abrupt function drift, this regression trees which
also handles both symbolic and numeric attributes on this
condition current regression methods need a careful
configuration depending on the dynamics of the problem, the
proposed algorithm may adapt to particular complete changes
of the target underlying regression function, because it expands
or prunes subtree and automatically adjust its internal
parameters to improve a local performance measure in each
node. The another parallel boosting trees is Gradient Boosted
Regression Trees (GBRT) are the current state-of –the-art
learning paradigm for machine learned web search ranking a
domain notorious for very large data sets, In this paper We
propose a never method for parallelizing the training of GBRT,
Our techniques parallelizes the construction of the individual
regression trees and operators using the master processor uses
these to build one layer of regression trees.Since this approach
is based on data partitioning, and requires a small amount of
communication.

Keywords—Ranking, Boosted, Boosted regression trees,
Gradient Boosted Regression tree, Sub tree

I. INTRODUCTION

In a huge and potentially infinite volumes of data are often
continuously generated by real-time system like
management communications networks. Online transaction
in the financial market or real industry. Scientific and
engineering experiments, surveillance systems and other
dynamic environments, producing data streams in order to
achieve better productivity learning algorithms are able to
construct models from these data containing the hidden
underlying relations between the independent feature and
the dependent one. Traditional learning algorithms can be
executed in batch mode in order to obtain models
representing relations of data. When Traditional learning
algorithm are gradually changes, When dealing with
dynamic data streams are derived from complex
algorithms, the underlying relations between variables,
may change over time, these changes will not always occur
with the same speed. Sometimes they are faster, and others
are slower, when changes occur will also occur partially or
totally.

This can be illustrated making use of a simple univariate
function as the underlying relation to be learned. Suppose
that the initial function in the data stream is a straight line.
After sometime the function moves up by incrementing its
interception in some small this process is repeated several
times until the function reaches the final position. A well
known technique to learn models in these conditions is to
forget past examples and take into account new data,
updating the model accordingly, with regards to the
forgetting mechanism; learning algorithm may use local or
global windows, with fixed or adaptive size. Windows
contain the information about recent data from data stream.
Since our proposal is an incremental regression tree, each
branch from root of the tree to a leaf Represents a region of
the function. The purpose of the presented method called
SAIRT (self Adaptive Induction of regression tree is deal
with tasks involving unknown dynamics. and also its deals
with a learning algorithms. which leaf maintains a local
window.

In this parallel boosted regression tress for web search
ranking. It’s a world wide web from an initial experiment
at CERN to a global phenomenon. In this time, web search
engines have come to play an important role in how users
access the internet and have seen tremendous advances, a
crucial part of a search engine is the ranking function,
which order to retrieves documents according to decreasing
relevance to the query. Recently web search ranking has
been recognized as a supervised machine learning problem.
Where each query-document pair is represented by a high-
dimensional feature vector and its label indicates the
documents degree to relevance to query. In GBRT is
angularly defines the current states of the art. Due to the
increasing amount of available data and the ubiquity of
multicourse and clouds, there is increasing interest in
parallelizing machine learning algorithms. In this paper, we
take the opposite approach and parallelize the construction
of individual weak learners.

In our approach, the algorithm works step by step by
constructing one layer of the regression tree at a time. One
layer of the regression tree at a time, one processor is
designated the master processor, and the others are the
workers, the data which are portioning to the weaker, at
each steo the workers compress their portion of the data

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 196

into small histograms and send this histograms to the
master, its then communicates this layer to the workers,
which allows them to compute histograms for the
construction of subsequent lays. The constructing steps
when a predefined depth is reached. This master-workers
approach with bounded communication has several
advantages,

1. It can be generalized to multicourse, shared memory
machines, clusters and clouds with relatively little efforts,

2. The data is portioned among users.

II. RELATED WORK

In a traditional task of stationary regression learning (i.e.,
approximation of a function from a static database) several
algorithms have been provided, construction of regression
models from a stream of data in which different unknown
dynamics may occur have received less attention from the
community.

On the other hand, the field of concept learning on data
streams has been an effervescent area in the recent past,
even when changes are present. The works by Domingo’s
and Hulten and Nunez˜ et al. are notables when dealing
with dynamic data streams for a classification. The
following paragraphs try to Resume the current state of the
art in the field of regression induction from dynamic data
streams by remarking on the most important characteristics
(from our point of view) of algorithms

That faces these problems:

1) Memory management

2) Adaptation of internal parameters.

Another interesting aspect is the management of the
internal parameters for dealing with real applications. This
allows the algorithm to learn from different conditions
without user action. In this paper, present a sample of
previous work on parallel machine learning most related to
our work. The related work falls into three categories:

1) Parallel decision trees

2) Parallelization of boosting

3) Parallelization of web search ranking using other
approaches such as bagging.

Parallel decision tree algorithms have been studied for
many years, and can be grouped into two main categories:

1) task-parallelism

2) data-parallelism

Algorithms in the first category has divide the tree into
sub-trees, which are constructed on deferent workers, e.g.
after the first node is split, the two remaining sub-trees are
constructed on separate workers. There are two downsides
of this approach. First, each worker should either have a

full copy of the data or large amount of data has to be
communicated to workers after each split. Therefore, for
large data sets, especially if the entire data set doesn’t fit in
each worker’s memory, this scheme would likely provide
slowdown rather than speedup. Second is and a small trees
are unlikely to get much speedup, since they cannot utilize
all the available workers.

This algorithm is most similar to BenHaim and YomTov’s
work on parallel approximate construction of decision trees
for classification. Our histogram methods were largely
inspired by their publication. However, our approach diers
in several ways. First, we are using a regression trees
instead of classification requiring us to interpolate
relevance scores within histogram bins instead of
computing one histogram per label. Further, our method
explicitly parallelizes gradient boosted regression trees
with a fixed small depth. This pGBRT algorithm obtains
more speed-ups on larger data sets, as the parallel scan of
the data to construct histograms takes a larger fraction of
the overall running time.

Finally, multiple approaches have been applied bagging to
web-search ranking. Recent work by Pavlov and Brunch
[24] uses bagged boosted regression trees. Bagging is
inherently parallel but requires additional computation time
as it is averaged over many independent runs (Pavlov and
Brunk used a total of M = 300,000 trees of depth d = 12 in
the Yahoo Learning to Rank Challenge). Usually, the
choice between bagging and boosting is based on desired
learning paradigm rather than computational resources.

III. DESCRIPTION

3.1. SAIRT learning algorithm

PROCEDURE SAIRT (tree, example)
Node = Root (tree)
Visited nodes = {node}
WHILE! Is Leaf (node) AND Incoherent
(node) DO node = Next Child (node,
example)
Visited nodes = visited nodes ∪ {node} ENDWHILE

IF Is Leaf (node) THEN - node is called leaf –
Store (example, leaf)
Update Statistics ({leaf})
Node = Try Expansion (leaf)
IF Is Leaf (node) THEN AdaptLocalWindow ({leaf})
ENDIF
ELSE–node is not coherent–
Drop (example, node)
AdaptLocalWindow (Degraded Leaves (node))
Leaf = Prune (node)
Update Statistics ({leaf})
Try Expansion (leaf)
ENDIF
Update Statistics (visited nodes)
SAIRT is an algorithm for incremental induction of bi-nary
regression trees, which also supports adaptability to

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 197

gradual, and abrupt function drift, the handling of symbolic
and numeric attributes, and robustness to noise and virtual
drift in data. Depending on the dynamics of the problem
this method expands or prunes sub trees and adjusts its
internal parameters to improve the local performance
measure in each node. SAIRT develops a partial memory
management; that is to say, it selectively forgets examples
and stores the remaining ones in local windows present in
the leaves of the tree. This method is designed to be used
under unknown dynamics, and thus it is able to
automatically adapt its parameters for each problem.
3.2. Gradient Boosted Regression Trees

Input: data set D = {(xi, yi)}n
i=1, Parameters: α, m, d

Initialization: ri = yi, ∀ i

C(·) = 0
for t = 1 to m do
gt ← O({(xi, ri})
C(·) ← C(·) + αgt(·)
for i = 1 to n do
ri ← − ∂

∂ht(xi)
end for
end for
return C
In traditional GBRT algorithm, spends the majority of its
computation time evaluating split points during the
creation of regression tree. we speed up and parallelize this
process by summarizing label and feature value
distributions using histograms. Here we describe how a
single split, evaluated on the data that reaches the particular
node, is computed using this histograms.
3.3 Parallel cart algorithm Parameter: maximum depth tree
← unlabeled node

while tree depth < maximum depth do for each feature do
Instantiate an empty histogram at each leaf for each
worker do Initiate non-blocking receive for worker’s his-
tograms end for while non-completed receives do wait for
some receive to complete merge received histograms at
leaves end while update best splits for each leaf end for
send next layer of leaves to each worker

end while

return tree

3.4 Parallel CART worker

Input: data set D={xi,ri}in=1

Parameter: maximum depth

Tree←unlabeled node

While tree depth < maximum
depth do Navigate training data D
to leaf nodes v For each feature f
do merge(hvi,([xi]f,1,ri))

end for

initiate non-blocking send for histograms from all
leaves end for

receive next layer of leaves from
master end while

In our algorithm we have used master processor and P
workers we assume the data divided into P disjoint subset
and stored in different physical locations in each worker
can access one of these locations. Then the master
processor creates the regression trees in layer by layer at
each iteration a new layer is constructed. By using
histograms the worker compresses its share of the data and
it sends to the master processor. Then the master merges
the histograms and uses them. We select the best splits for
each leaf node, their constructing new layer. then this new
layer sends to the worker. Then worker constructs the
histograms for the new layer. So the communication
consists entire of the worker sending histograms to the
master and master sending the new layer of the tree since
the depth of the regression tree is small.

IV. EXPERIMENTAL RESULTS

In this section presents the results of the proposed
algorithm when facing different kinds of problems, from
classic (stationary) datasets to data streams where the
underlying knowledge changes. To compare results, we
have chosen several well-known algorithms based on
different techniques on ma-chine learning and data mining:
M5’ [32] is a regression tree-based learning algorithm that
extends M5 and is used when facing problems without
changes in the function to induce; IBk is a nearest
neighbour algorithm used for both classification and
prediction tasks; Linear-Regression tries to obtain a linear
model to approximate the underlying function; finally,
MLP is a multilayer perception-based algorithm. We used
a suite for data mining called Weka [32] to obtain results
with the algorithms described above. In addition, the
algorithm FIRT-DD, a regression tree-based algorithm able
to ex-tract knowledge from time-changing data streams,
was also used in the comparisons of this section. Otherwise
stated, default parameters for all methods are used on all
the experiments. For each experiment, we will collect
measurements of error rate (specifically, Root Mean
Squared Error, RMSE), memory consumption and time
devoted to processing one example. With the aim of
knowing when SAIRT reacts to changes in functions when
there are not (false alarms), an additional metric, called
estimated rate of function change (erfc), is collected for
each experiment. It is calculated with the arrival. In this
section, we describe the empirical evaluation of our
algorithm using two

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 198

Fig 1:ERR and NDCG for yahoo set 1(top) and yahoo
set 2 (bottom) on parallel (pGBRT) and exact (GBRT)
implementation with various tree depths d.The NDCG

plot for set 1 (top right) shows nicely that pGBRT with a
tree depth d+1 leads to results similar to the exact

algorithm with depth d.

Table 1: Statistics of the yahoo competition and Microsoft learning to rank data set

Yahoo
LTRC MSLR MQ2008 Folds

TRAIN Set 1 Set 2 F1 F2 F3 F4 F5

Features 700 700 136 136 136 136 136
 722,60
Documents 473,134 34,815 723,412 716,683 719,111 718,768 2
Queries 19,944 1266 6000 6000 6000 6000 6000
Avg # Doc per 119.43
Query 22.723 26.5 119.569 118.447 118.852 118.795 4

TEST Set 1 Set 2 F1 F2 F3 F4 F5
 235,25
Documents 165,660 103,174 241,521 241,988 239,093 242,331 9
Queries 6983 3798 6000 6000 6000 6000 6000
Avg # Doc per 116.62
Query 22.723 26.165 119.761 119.994 118.547 120.167 95

publicly available web search Ranking data compilations.
We see impressive speedups on both shared memory and
distributed memory machines. In ad-dition, we found that,
while the individual regression trees are weaker using our
approximate parallel algorithm (as expected), with
appropriate parameter settings, the final regressor did not
lose much accuracy. In some cases, our parallel
implementation generates a regressor that is just as good
as the sequential implementation, while in others, it was
slightly less accurate. We conducted experiments on a
parallel shared memory machine and a distributed
memory cluster. The shared memory machine is an AMD
Opteron 1U-A1403 48-core SMP machine with four
sockets contain-ing AMD Opteron 6168 Magny Cours
processors. The distributed memory cluster consists of 8-
core, Nehalem based computing nodes running at
2.73GHz. They each have 24GB of RAM. For our
experiments, we used 6 of these nodes (with a total of 48
cores). For our empirical evaluation, we use the two data
sets from Yahoo! Inc.’s Learning to Rank Challenge 2010
[9], and the five folds of Microsoft’s LETOR [21] dataset.

Each of these sets come with predefined training
invalidation and test sets. Table 1 summarizes the
statistics of these data sets. The above Figure shows the
ERR and NDCG of the parallel implementation
“pGBRT” and of the exact algorithm “GBRT” as a
function of the number of boosting iterations on the

Yahoo Set 1 and 2 under varying tree depths. For the
parallel implementation, we used b = 25 bins for Set 2
and b = 50 for the much larger Set 1. The step-size was
set to α = 0.06 in both cases. As expected, the histogram
approximation reduces the ac-curacy of the weak learners.
Consequently, with equal depth and iterations, pGBRT
has lower ERR and NDCG than the exact GBRT.
However, we can compensate for this effect by either
running additional iterations or increasing the depth of the
regression trees. In fact, it is remarkable that on Set 1
(Figure 1) the NDCG curves of pGBRT with d = 6 and d
= 5 align almost perfectly with the curves of GBRT with
d = 5 and d = 4, respectively. For Set 2 the lines are
mostly shifted by approximately 200 iterations. The
additional computation required by either of these
approaches (increasing d or m) is more than compensated
for by the better performance of the

histogram method since it does not require feature sorting.
(For small d ≤ 10 – while the computation is dominated
by while the computation is dominated by computation –
the running time increases roughly linearly with
increasing d. On the Yahoo Set 1, training pGBRT with m
= 6000 trees on 16 CPUs and depth d=5 was only a factor
1.34 slower than d = 4 and a depth of d = 6 slowed the
training time down by a factor of 1.75.)

V. CONCLUSION

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 199

As far as we know, there is no other algorithm able to
construct and adapt regression trees to data streams whose
underlying function changes over time as well as having
other dynamics present without an a-priori
parameterization. In order to face a wide spectrum of
tasks, systems and users, we think that learning
algorithms should be as simple to use as possible and that
the models generated should be understandable. This has
been a principal motivation in the design and evaluation
of the SAIRT algorithm. The way in which the knowledge
is represented helps to understand both the patterns
discovered in each moment and the problem itself. We
have presented a parallel algorithm for training gradient
boosted regression trees. To our knowledge, this is the
first work that explicitly parallelizes the construction of
regression trees for the purpose of gradient boosting. We
have shown that our approach provides impressive
speedups on several large-scale web-search data sets
without any significant sacrifice in accuracy.

Our method applies to multicore shared-memory systems as
well as to distributed setups in clusters and clouds. Since
each processor only needs enough physical memory for its
partition, and the communication is strictly bounded, this
allows the training of machine-learned rankers on web-scale
data sets even with standard off-the-shelf computer hardware.
We are planning to extend this work in several directions.
First, we think we can further increase the efficiency and
performance by eliminating the master and merging
histograms pair wise among workers. In addition to freeing

the master processor for useful work, this approach would
further overlap computation and communication. Second,
we are planning to run experiments with more workers on
clouds to gauge the of this approach on non-dedicated
machines. Third, we intend to investigate more aggressive
speed vs. accuracy trade in the computation of the splits
based on stochastic approximations of the histograms.
Given the current trend towards multi core processors,
parallel computing and larger data sets, we expect our
algorithm to increase in both relevance and utility in the
foreable future.

REFERENCES
[1] Raul Fdalfo-Merino, and Marlon Nunez “ self adaptive

induction of regression tree”

[2] Stephen Tyree and Kunal Agrawal “parallel boosted
regression trees for web search Ranking”.

[3] D.Pavlov and C.Brunk. Bagboo: Bagging the gradient
boosting. Talk at Workshop on Web search Ranking at
the 27th International Conference on Machine
Learning,2010.

[4] M.Nunez, R.Fidalgo, and R.Morales, “On-line
learning of decision tree in problems with unknown
dynamics,” in proceeding of the 4th Mexicon
International Conference on Artificial Intelligence,
2005.

