INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume-11, Number - 01, 2015

ISSN: 2349-4689

New Type Mixed Duality in Multi Objective
Fractional Programming Under Generalized p-
Convexity Function

Gayatri Devi, Rashmita Mohanty
Prof. CSE, ABIT College, CDA-1, Cuttack

Abstract : Two New types of mixed duality are introduced in this
paper. Weak and strong duality theorems are established under
generalized p -convexity. Also established necessary and
sufficient optimality condition.

Keywords: Non differentiable fractional programming,
symmetric duality, generalized convexity,p-function.

I.  INTRODUCTION

A fractional programming problem arises in many types of
optimization problem such as portfolio selection,
production, information theory and numerous decision
making problems in management science.

Multi objecive fractional programming duality has been of
much interest in the recent part. Schaible [1] and Bectar
etal. [2] derived Fritz John and Karush-Kuhn Tucker
necessary, and sufficient optimality condition for a class of
non-differentiable convex multi objective fractional
programming problems and established duality theorems.
Bectar et.al. [3] and Xu [4] gave a mixed type duality for
fractional programming, established some duality results.

Several authors, such as the ones of [5, 6, 7, 8, 9], studied
multi objective non-differentiable multi objective fractional
problem in which numerators contains support function.

Motivated by the earlier authors in this paper we introduced
new type of mixed dual of a non differentiable multi
objective  fractional programming ;problem  using
generalized [Ecbnvex assumptions. Also we established the
necessary and sufficient optimality condition. Section 3.5
deals with conclusion and scope for future work.

II.  NOTATIONS AND PRELIMINARIES

Let R" be the n-dimensional Euclidean space and R be its

non -negative orthant. The following conventions for
inequality will be used in this paper. For any x = (Xg, Xa,
ceen Xn), Y = (Y1, Y2, -...Yn), We denote
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(i Xx>y< x>y foralli=1 z,...n

(i) X2y< X, 2y;and x #y
Let x be a non empty open subset of R".

Consider the following non differentiable multiobjective
fractional programming problem :

ForN={1,2,...n}, let J; =N and J, = N/J,.

Let |Jy|, |J,| denote the number of elements in the set J; and
Js.
If J, =¢, then J, =N thatis [J;|=0and |J,|=n

Hence R™ is zero dimensional Euclidean space and RM:|
is n-dimensional Euclidean space.

Itis clear that any x e R" can be written as
X = (xl,xz),x1 cRM x2 ¢ R

f f .
Let -L:RPI SR and-2:RP SR be  twice
0; 9>

differentiable functions and e = (1, 1,...1)T eR’
(MFPOQ) minimize F(x) = f(x) / g(x)

(MFP1) = Fl(xl)+ K (x?)
- [(fl(xl)—vlgl(xl))+ (f2(Xz)—vzgz(xz)ﬂ+...+)!i_r>r;
[(f“(xl)_vlﬂgu(xl))Jr (fzz(xz)—vugzé (Xz)ﬂ fori=1,..,°0

(MFP3)  minimize x(ﬁ(xl)+F2(x2)), n o is 0-
dimensional strictly positive vector

=LF(x)
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Subjectto h(x) <0

h(x)= hij(xl)+h2j(x2), j=(12,..m) are differentiable
functions hy; R R, hy; R R,

x!e Rm, x? e R

We assume that f;(x)>0 and g;(x)>0on R" for | =1,
2,....k

Let  xp={xeXcR":hj(x)<0,j=12..m} for
feasible of MFP1 and denote | = {1, 2, ..... kKl M=M=
{1, 2, ... m} Jl={jeM; hj(x):O} and
3, ={ieM;hj(x)<

In the following
fi:X>R, n:XxX->R", peR,

} It is obvious that J, UJ, =M

definition let

Definition 2.1 : f is said to be [}invex at x e X with

respectto (T T 11 ]if

fi(x)—fi(i)zn(x, x) v ( +pHX XH Vx e X

Definition 2.2 : f is said to be [Fpsudo invex at x e X with
respectto (T T T [ |if
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n(x, x) Vf +pHX XH >0

:fi(x)—fi(Q)ZOVXeX

Definition 2.3 : f; is said to be [Jquasiinvex at x e X with

respectto (T T T T Jif
fi(x)-f, (x) <0

= n(x, x) Vf + pHX XH <0,Vx eX.

Definition 2.4 : A feasible point x is said to be efficient
for (MFPO) if there exist no other feasible point x in

(MFPO) such that
R (x)<F (i) i=12 ..k and F(x)<F (i) for some
re(y 2,...k)

Definition 2.5 : A feasible point x is said to be properly
efficient for (MFPO) , if it is efficient and there exist M > 0

such that for each I = (1, 2, ...
in (MFPO) satisfying F (x) <R (i) , we have

k) and for all feasible point x

E(;)—Fi(x)sM(Fr(x)—Fr(;)) for some r such that

LEMMA

Lemma 3.1 : If x° is an optimal solution of MFP1 then x° is properly efficient for MFPO.

Lemma 3.2 : If x° is an efficient solution for MFPO iff it is an efficient solution of MFP1 with F(xo) =0.

Lemma 3.3 : (Necessary optimal condition)

If x e X is an optimal solution of (MFPO) such that

VAF(R)+ V() = 324 [ 71, (x) v (1] ]+ 22wy x) -0 331

v;20,i=12 ...k

Lemma 3.4 : (Sufficient optimality condition)
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i=1

[3.3.2]

[3.3.3]

[3.3.4]
[3.3.5]
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Let x e X° be a feasible solution of (MFPO) and there exist A €R,, v; €R, and y eR™ satisfying the condition in Lemma
3.lat x.

Furthermore suppose that any one of the condition (a) or (b) holds

k m
(a) p(X) =2 A [Fi (x)=vigi () ]+ X y;h;(x) is CIpseudo invex with respect to [T T 11 Jat x e X°
i-1 =1
m

k
(b) Q(x) =D % [fi(x)-vigi(x)] is Ipseudo invex and H(x)=>y.h;(x) is [Jquasi invex with respect to
i=1

j=1
p, n at x e X°. Then x is an efficient solution of (MFPO).

Proof :

Suppose hypothesis (a) holds.

Since the conditions of Lemma 3.3.3 are satisfied, from 3.3.1, we have Vp(i):o. So for n(x, ;) eR", we can write
T — —\T — —2
n(x, x) Vp(x):o. For p eR, we have n(x, x) Vp(x)+p”x—x” >0

Since p(x) is [}pseudo invex with respect to m, p at x € X°, we have (p(x)—p(?)) >0 and
K m k . _ m _
D[ () =vigi (x) ]+ 2 yihi (%)= D [fi (x) -vig; (xﬂ+ Dyih; (x) (3.3.6)
i-1 1 i-1 1

Suppose x is not efficient solution of MFP1, then there exist x e X° such that

f.(x) - vig (x) <f; (i)—vigi(g),i =1,2,..k and f;(x)-v;g; (x) <f, (i)—vigi (?) for some i € (1, 2, ...k). The above relation

together with the relation A; >0 implies that

izkl:ki [fi(x) - vigi (x)] <

From the relation (3.2.1), (3.2.1) and (3.2.4), we get

2| (%) - vigi (%) ] (3.3.7)

k
i=1

M=

'M@S;wm&) (3.3.8)
J =

Il
uN

Consequently (3.3.7) and (3.3.8) yields

k

gki [f,(x)-vig; (x)]+%yjhj(x) <3N [fi (i)—vigi (?)J+%yjhj (?)

i=1

This contradicts (3.3.6)

Hence x is an efficient solution for (MFP1).

Again suppose hypothesis (b) holds

From the relation (3.2.1), (3.3.3) and (3.2.4), we get

iyihj(X)siyjhj(;): H(x)< H(i)

WWW.ijspr.com IUSPR | 14



INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR) ISSN: 2349-4689
Volume-11, Number - 01, 2015

= k(x, x)w {H(x)-H(x)} <0.
Hence the [lquasi invexity of H(x) with respect to [T T T T Jimplies

n(x, Q)T VH(x)+ pHX —i”z <0 =(x, Q)T VH(x)<0 (3.3.9)
From (3.3.1), we get

2[5 (%)= vi (Ve () [+ 2w () = o

i=1

N

1
N

=V Q(x)+VH(;):O
=n(x x)' [vQ(x)+ vH(x)]=0
= n(x x)' VQ(x)+n(x x)' VH(x)=0 [3.3.10]

Using (3.3.9) in (3.3.10), we get n(x, i)T VQ(x) > 0. For peR,, we have

n(x, §)T vVQ(x)+ pHX —§”2 >0

Since Q(x) is [kpseudo invex wih respect to [T T 1] we obtained Q(x)— Q(x) >0.

k k _ —
= 3010~ vigi ()] [ (x) - vias (¢ (3311)
i=1 i=1
If x was not an efficient solution to (MFP1), then from (3.3.6), we have
k k _ —
;xi [£,(x)-vig(x)] < ;Ai [fi (x) ~Vi0; (x)]

This contradicts (3.3.11)

Therefore x is an efficient solution for (MFP1)

IV. MIXED DUALITY IN FRACTIONAL PROGRAMMING
Dual problem :

(MFDO) = Maximizef(u) _h (u’) n Fa (uz)

9(u) 0 (u) " gy (v?)

Maximize F(u)=——

= Fl(u1)+F2(u2)
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|
+

- (fli (ul) — vy (0 )(ul)) +(f2i (uz)— VoiGoi (uz))
(MFD,) maximize [(fﬂ(ul) - vllgll(ul))+(f21(u2) - V21921(UZ)):| ,,,,,

|:(fl(’ (Ul) — V191 (Ul))Jr(fze (UZ) — Vo920 (UZ))}
=(R(u)--F (u))=F(u)

(MFD,) maximize AF(u), A; €R,,i=1,..0

All with subject to same constraint.

V2R (u!)+ yiihy (u) | =0 (3.4.5)
and V[XFZ (u2)+ yihy; (uzﬂ =0,

f, (u1)+y1Tjh1j(ul)—vlig1i (ul) >0 fori=1, ...k,

and f (u2)+y£jh2j(u2)—v2i92i(uz)z0 fori=1,..k (3.4.6)
y;jhzj(ul)zo, yL—hzj(uz)zO Yaj cRM 1 (3.4.7)
U'>0u?>0; vy, vy 20 (3.4.8)

Theorem 4.1 (weak duality)

Let x be a feasible solution for the primal and (uo, Y, v) be feasible for dual
If F(u)="f;(u)+ygh; (u) - vig; (u), i=11i,..k is p-pseudo invex with respect to n, p, for
Yaj € RM1Hl, yL- h,;(u) is p -quasi invex with respect to n, p, then
Inf (AF(x)) = Sup(AF(u))
Proof : Now from the primal and dual constraint, we have h(x) <0 and y}j hyj(u)=0
S0 vy hzj(xl)—y;jhzj(ul) <0 and y;jhzj(xz)—y%hzj(uz)so (3.4.9)
Since ygjhzj is p-quasi invex with respect to m and in view of (3.4.9) for x,ueR", we have

)9 B ()] plp -

<0, n(xz,uZ)T V[yijhzj (uzﬂ+pux2 —UZH <0

= n(xl,ul)T V[y;j hzj(ulﬂ <0 and n(xz,uz)T V[y;—hzj(uzﬂ <0 (3.4.10)

From the dual constraint (3.4.5), we have
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V[xFl(ul)+lejhlj(ul)} =0 and V[XFZ(UZ)erLhZJ—(uZ)J =0

Since n(xl,ul) <R" and n(xz,uz) <Rl we have

n(xl,ul)T V[kFl(u1)+th2j (ul” =0and n(xz,uz)T V[XFZ(UZ)+th2j (uzﬂ =0

= n(xl,ul)T V(xFl(ul))+n(xl,ul)T (y;jhzj(ul)) =0and n(xz,uz)T V(XFZ (uz))+n(x2,u2)T (y{jhzj(uz)) =0
Using (3.4.10), we get

n(xl,ul)TV(XFl(ul))ZO

9| S ) o) v o) [ e - 200 0] v (o5 (1)) 0

2

= n(x2 : uz)T VLZ; A {fi (uz) +yphy; (uz)— vigi (uz)}} + p”x2 - UZH >0 (3.4.11)
Since F(u) is p-pseudoinvex with respect to n and (3.4.11), we get

30 {0 s ) v 0 ) o) v ) |-
{5 ) 9 () = v ) 1 07 iy (07) v (2] | 20

k

- ;ki [{fli (%) + vy ()~ vigy (Xl)} + {f2i (%2)+ vig; (x2) - a0 (XZ)H N
gki {0t vl () v (o) (07 vy (07) o (07) (3.4.12)

Since h(x) <0 = y{jhy;(x) <0 for y;; >0

So (3.4.12) implies that

S8l ) T2 S )l ) v )]

= Inf(1F(x))= Sup(AF(u))

Theorem 4.2 (Strong Duality) : (U,V,\_/,W) is feasible for dual, Fi(u) is p-pseudo invex

Let X be properly efficient solution of (MFPO) and a - ] o - ===
constraint qualification (Mangasarian [ 1) is satisfied. Then and y; h; is n —quasi invex then (X = u’y’V’W) IS

there exists a feasible solution (U,y,V,W) for dual and properly efficient for (MFDO).

corresponding objective values are equal to zero. Furhter if Proof : Since X isa properly efficient solution of (MFPO),
it is optional for (MFP,). Then by lemma (3.3.3), we have
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V AR (X) +y] ah, (X)=0

These are nothing but the dual constraints. So (U, y,v, W)

is feasible for dual. So the objective values of (MFP;) and
(MFD,) are equal to zero. It follows from theorem 3.4.2 and

for any feasible solution (U,y,V,W) of dual
A F(U) <A F(i) . So (Z)_/,V, W) is optimal solution of
(MFD,). Then applying Lemma 3.3.1 and Lemma 3.3.2,
we conclude that (i,Y/,V,W) is properly efficient for
(MFDO).

V. CONCLUSION

In this paper, we introduced three approach given by
Dinkelbaih [11], Jagannathan [12] and Yang at.al [10] for
both primal and mixed type dual of a nondifferentiable
multiobjective frictional programming problem. The results
developed in this paper can be further extended to second
order mixed type fractional programming problem and
nondifferentiable fractional programming problems.
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