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Abstract—Navigation in time-evolving environments with moving 
targets and obstacles requires cognitive abilities widely 
demonstrated by even simplest animals. Nevertheless, it is a long-
standing challenging problem for artificial agents. Research on 
navigation has been particularly notable for the increased 
understanding of the factors affecting human navigation and the 
neural networks supporting it. The use of virtual reality 
environments has made it possible to explore the effect of 
environment layout and content on way-finding performance. 
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I. INTRODUCTION 

The study of navigation has a long history in neuroscience. 
At one time or another we have each become lost—maybe in 
a new city, heading in the wrong direction or walking in 
circles on the way to the hotel. In contrast, most of us can 
travel to and from work each day without any problems, 
often arriving with little recollection of the journey we took 
and the decisions we made along the way. Remembering and 
navigating environments is of great importance for humans 
and animals alike, yet we often take it for granted. 

II. BRAIN-COMPUTER INTERFACE 

A BCI has an input (e.g.electrophysiological activity from 
the user), an output (i.e. device commands), components that 
translate input into output and a protocol that determines the 
onset, offset, and timing of operation. Signals from the brain 
are acquired by electrodes on the scalp or in the head and 
processed to extract specific signal features (e.g. amplitudes 
of evoked potentials or sensory-motor cortex rhythms, firing 
rates of cortical neurons) that reflect the user’s intent. These 
features are translated into commands that operate a device 
(e.g. a simple word processing program, a wheelchair, or a 
neuroprosthesis). 

III. NEURAL SUBSTRATES 

 The course of its investigation is marked by a number of key 
events, much work in the past year has gone into exploring 
further the neural basis of navigation in humans. Just as the 

layout, complexity and content of environments affect 
navigation performance and interact with the sex and age of 
subjects, so might environmental and subject factors interact 
with the neural mechanisms supporting navigation. Very 
little is yet known about the neuroanatomical differences, if 
any, that are associated with sex or age differences and 
human navigation. In contrast, the effects of environmental 
manipulations have been examined by functional imaging 
studies in which subjects navigate in virtual environments 
during PET or fMRI scanning. Neuroimaging provides 
unique insights into the networks of brain regions supporting 
navigation in the normal human brain in vivo. A consistent 
pattern of brain activity associated with navigation has 
emerged from imaging work in the past year or so, but there 
are still some disagreements about the exact functions of 
particular elements of the navigation system. From recent 
imaging work it seems clear that key regions for navigation 
in humans include the medial and right inferior parietal 
cortex, the posterior cingulate cortex, parts of the basal 
ganglia, the left prefrontal cortex, the bilateral medial 
temporal region .Using fMRI scanning, have reported that 
navigation in a virtual maze is associated with increased 
activity in the parahippocampal gyrus, giving rise to the 
suggestion that, unlike rats, the parahippocampal gyrus but 
not the hippocampus is the crucial neural structure 
supporting spatial mapping in humans . Other imaging 
studies, however this area is active when recalling 
landmarks, but not when recalling complex routes where the 
use of a cognitive map would be required. A PET study 
found that the parahippocampal gyrus is activated when the 
recall of object location in a spatial array is required, akin to 
traditional table-top tasks. Passive processing of scenes also 
activates this area. This evidence points to a role for the 
parahippocampalgyrus and posterior occipito-temporal 
cortex in object–location associations , but not more complex 
cognitive mapping. Further evidence of this comes from a 
PET study in which navigation in a stark featureless virtual 
maze-like environment was compared to navigation in a 
maze-like environment that included several everyday 
objects as landmarks. The parahippocampal gyrus was 
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activated only when navigation occurred in the maze with 
landmarks. Thus, just as landmarks were found to have an 
impact on way-finding in the behavioural studies described 
above, their presence is also an influential factor on the 
neural mechanisms supporting navigation. The suggests that 
representing large-scale space depends on the human 
hippocampus proper, either directly, or at least via its role in 
episodic memory. The imaging work just described also 
highlights a further effect of environmental manipulation, 
with implications for the brain regions activated. In scanning 
studies using simple maze-like environments, there was no 
increased activation of the hippocampus proper. They do not 
feel realistic (i.e. they have poor ‘presence’), and they can be 
amenable to solution without recourse to a cognitive map 
(e.g. by using a linear or verbal representation). This stands 
in contrast to the increases in hippocampal activity observed 
when subjects learned how to navigate through a town by 
watching film footage of travel through a real town , by 
recalling routes through a real city, or by recalling a route 
learned in the real world before scanning took place . Taking 
these findings into consideration, scanning experiments are 
now using more realistic town-like environments to simulate 
real navigation with increased ‘presence’.  

 
Fig. 1  Aerial view of the virtual environment of one maze 

demonstrating the possible intersections and paths (not 
shown to subjects). Landmarks with distinct patterns are 

indicated by solid black lines. 

The opportunity afforded by being able to combine 
monitoring changes in blood flow with recording and 
measuring online navigation performance has given further 
insights into the precise activity of elements of the navigation 
network. Recently, used PET to scan subjects while they 
performed retrieval tasks in a complex computer-simulated 
town they had spent time learning prior to scanning. Subjects 
either found their way to specified destinations in the town 
using the internal representation they built up during learning 
or followed a trial of arrows through the town that did not 
require the use of topographical memory but controlled for 

movement and optical flow. Subjects’ behavioural 
performances as well as changes in cerebral perfusion during 
scanning were recorded and analysed. The right 
hippocampus was more activated when reaching a 
destination successfully than when following the trail of 
arrows, and during successful trials than during unsuccessful 
trials. In addition, there was a significant correlation between 
blood flow changes in the right hippocampus and right 
inferior parietal cortex with the accuracy of navigation—the 
more accurate the path taken to the goal place, the more 
active these regions. The highest correlation was found in the 
right hippocampus and the second highest in the right 
inferior parietal cortex.  

Brain waves and EEG 

Electrical recordings from the surface of the brain or even 
from the outer surface of the head demonstrate that there is 
continuous electrical activity in the brain. Both the intensity 
and the patterns of this electrical activity are determined by 
the level of excitation of different parts of the brain resulting 
from sleep, wakefulness, or brain diseases such as epilepsy 
or even psychoses. 

The undulations in the recorded electrical potentials are 
called brain waves, and the entire record is called an EEG 

 
Fig 2.Delta waves(0.4-4 Hz), Theta waves (4-8 Hz) , Alpha 
waves (8-13 Hz), Beta waves(13-30 Hz) and Gamma waves 

(26-100 Hz) . 

The mean and any linear trend in the data were removed 
before multiplying the signal with a window. Hamming 
window was used. Band Pass filter was used with 1Hz low 
cut off frequency and 35Hz high cut off frequency. The 
objective of filtering is to improve the quality of a signal. 
After acquiring the data, it is necessary to process the raw 
signal before it can be classified by the computer. First, the 
signal suffers a pre-processing, which consists mainly in 
filtering the signal [1]. Second, this signal is subjected to a 
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feature extraction procedure, for example, spectral analysis 
or voltage amplitude measurements . 

 

Fig 2. EEG signals from a healthy person and a person with 
difficulty 

Through the feature extraction, we expect to be capable of 
recognising a specific activity from the user’s brain. The 
procedure used must be able to discriminate which 
information is relevant and which is not. BCI system is the 
classification of the signal, in which it is necessary to create 
an algorithm which translates the signal features into orders 
recognisable by the computer. 

IV. CONCLUSION 

A brain–computer interface is a communication and control 
channel that does not depend on the brain’s normal output 
pathways of peripheral nerves and muscles. The complexity 
and content of the environment affects navigation success 
and may also interact with the sex and age of the subjects 
being tested. The nature of the environment also impacts 
upon the neural mechanisms required to support navigation. 
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