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Abstract- The sign detection algorithms are sort of thing get done 
using various algorithms and the digital logic can be synthesized 
on different synthesis tools. The digital algorithm designed for the 
sign detection is evaluated based on the area and delay profiles. 
The detection speed is must higher for faster calculations. In this 
paper a fast sign detection algorithm is proposed and the 
algorithm utilizes residue number system to detect sign. The 
proposed algorithm is designed to process 32-bits of information 
processing as in existing work with lower delay. The Unit Gate 
delay calculated of the proposed architecture is 0.196ns which is 
80% better than the existing work and overall delay is 15.57ns. 
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I. INTRODUCTION 

In general,  numbers  may  be signed,  and  for binary  digital  
arithmetic there are three standard notations that have been 
traditionally used for the binary  representation of signed  
numbers.    These  are  sign-and-magnitude, one’s 
complement, and  two’s complement.    Of these  three,  the  
last  is the most popular,  because  of the relative  ease and 
speed with which the basic arithmetic operations can be 
implemented.  Sign-and-magnitude notation has the  
convenience  of having  a sign-representation that is similar  
to that used  in ordinary  decimal  arithmetic.  And  one’s 
complement, although a notation in its own right, more often 
appears  only as an intermediate step in arithmetic involving 
the other  two notations. 

The sign-and-magnitude notation is derived from the 
conventional written notation of representing a negative 
number by pretending a sign to a magnitude that represents a 
positive number. For binary computer hardware, a single bit 
success for the sign: a sign bit of 0 indicates a positive 
number,   and  a sign bit  of 1 indicates  a negative  number.    
For  example, the representation of the number  positive-five 
in six bits is 000101, and the corresponding  representation of 
negative-five  is 100101. Note that the representation of the  
sign is independent of that of the  magnitude and  takes up  
exactly  one bit;  this  is not  the  case both  with  one’s 
complement and two’s complement notations. 

Sign-and-magnitude notation  has  two  representations,  000. 
. . 0  and 100. . . 0, for the number  zero; it is therefore 
redundant. With  one exception (in the  context  of floating-
point numbers) this  existence  of two representations for 
zero  can  be  a  nuisance  in  an  implementation.   Addition  
and subtraction are harder  to implement in this notation than  
in one’s complement and two’s complement notations; and as 
these are the most common arithmetic operations, true  sign-
and-magnitude arithmetic is very  rarely implemented. 

In one’s complement notation, the  representation of the  
negation  of a number  is obtained by inverting  the  bits  in 
its binary  representation; that is, the 0s are changed  to 1s 
and the 1s are changed  to 0s. For example, the representation 
of the number  positive-five in six bits is 000101 and 
negative- five therefore has the representation 111010. The 
leading bit again indicates the sign of the number,  being 0 
for a positive  number  and 1 for a negative number.   We 
shall therefore  refer to the  most  significant  digit  as the  
sign bit,  although here  the  sign  of a  negative  number   is 
in  fact  represented by  an  infinite  string  of 1s that in 
practice  is truncated according  to  the number of bits used in 
the representations and the magnitude of the number 
represented.   

It is straightforward to show that the  n-bit  representation of 
the negation  of a number  N  is also, when interpreted as the 
representation of an unsigned  number,  that of 2n − 1 − N .  
(This  point will be useful in subsequent discussions of basic 
residue arithmetic.) The one’s complement system  too  has  
two  representations for zero—00. . . 0 and  11. . . 1—which 
can be a nuisance  in implementations. We shall see that a 
similar problem occurs with  certain  residue  number  
systems.   Addition  and  subtraction in this  notation are 
harder  to implement than  in two’s complement notation (but  
easier  than  in sign-and-magnitude notation) and  
multiplication and division are only slightly  less so.  For this  
reason,  two’s complement is the preferred  notation for 
implementing most computer arithmetic. 

Negation  in two’s complement notation consists of a bit-
inversion (that is, a translation into  the  one’s complement) 
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followed by the  addition  of a 1, with any carry  from the 
addition  being ignored.  Thus,  for example,  the result of 
negating 000101 is 111011. As with one’s complement 
notation, the leftmost  bit here too indicates  the sign: it is 0 
for a positive number  and 1 for a negative number;  but 
again, strictly, the sign is actually  represented by the 
truncation of an infinite string.  For n-bit  representations, 
representing the negation  of the number  N  may also be 
viewed as the representation of the positive  number  2n − N . 

In  contrast with  the  first  two  conventional notations,  the  
two’s  complement has only one representation for zero, i.e.  
00. . . 0.  The  two’s complement notation is the  most  
widely used of the  three  systems,  as the  algorithms  and  
hardware designs  required  for its  implementation are  quite 
straightforward.  Addition, subtraction,  and  multiplication 
are  relatively easy to implement with this notation, and 
division is only slightly less so. 

All of the notations above can be readily extended  to non-
binary radices. The  extension  of binary  sign-and-magnitude 
to  an  arbitrary radix,  r,  involves representing the  
magnitude in radix-r  and  using 0 in the  sign digit for 
positive numbers  and r − 1 for negative  numbers.  An 
alternative representation for the sign is to use half of the 
permissible values of the sign digit (that is, 0 . . . r/2 − 1, 
assuming  r is even) for the positive numbers  and the other 
half (that is, r/2 . . . r − 1, for an even radix)  for the negative 
numbers. 

The  generalization of one’s complement to an arbitrary radix  
is known as diminished-radix complement, the name being 
derived from the fact that to negate  a number  in this  
notation, each digit  is subtracted from the  radix diminished  
by one, i.e. from r − 1.  

Alternatively, the representation of the negation  may also be 
viewed as the result  of subtracting the number  from rn − 1, 
where n is the number  of digits used in the representations. 
Thus, for example,  the negation  of 01432 in radix-8  is 
76345, i.e.  77777 − 01432. The  sign digit  will be 0 for a  
positive  number  and  r − 1 for a  negative number.   The  
generalization of two’s complement to an arbitrary radix  is 
known  as radix complement notation.   

In radix  complement notation, the radix-r  negation  of a 
number  is obtained, essentially,  by subtracting  from rn , 
where n is the  number  of digits  used in the  representations.  
Alternatively, negation  may also be taken  as the formation  
of the diminished-radix complement followed by the addition  
of a 1. Thus,  for example, the radix-8 negation  of 01432 is 

76346, i.e. 100000 − 01432 or 77777 − 01432 + 1. The 
determination of sign  is similar  to  that for the  radix-r  
diminished-radix complement. 

II. RESIDUE NUMBER SYSTEM 

Residue number systems are based on the congruence 
relation, which is defined as follows. Two integers, a and b 
are said to be congruent modulo m if m divides exactly the 
difference of a and b; it is common, especially in 
mathematics tests, to write a ≡ b(mod mi) to denote this. 
Thus, for example, 10 ≡ 7(mod 3), 10 ≡ 4(mod 3), 10 ≡ 
1(mod 3) and 10 ≡ −2(mod 3). The number m is a modulus 
or base, and we shall assume that its values exclude unity, 
which produces only trivial congruences. For unsigned 
numbers, that range is [0,M−1]. Representations in a system 
in which the moduli are not pairwise relatively prime will not 
be unique; two or more numbers will have the same 
representation. 

Advantages : 

Most important advantage of residue arithmetic over 
conventional arithmetic is the absence of carry propagation, 
in the two main operations of addition and multiplication, 
and the relatively low precisions required ranging to 
individual prime or co-prime number of the moduli set, 
which enables LUT implementations in various operations. 
In practice, these may make residue arithmetic worthwhile, 
even though in terms of practical applications such arithmetic 
has little fields over conventional arithmetic to cover. 
However the concept of ’break and process’ can be very 
useful in places where integer arithmetic is predominant. 
However, the fields of Communication and Signal Processing 
are yet to be explored thoroughly for application on RNS 

Basic advantages of residue arithmetic are:  

• High Speed  
• Low Power  
• Superior Fault Tolerance  
• Reduction of Computational Load 

Limitations and Constraints in Residue Arithmetic On 
completion of extensive literature survey the following 
problem statements were de- fined:  

• Magnitude Calculation  
• Sign Detection  
• Overflow Detection and Correction 
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III. PROPOSED METHODOLOGY 

For sign detection a trite technique was used. In this a sign 
bit was introduced as 32nd bit. This results in a signed bit 
representation of a number. Operating on floating numbers is 
a difficult task in residue arithmetic. Hence we convert the 
floating point number to an integer in a range ±Z. The 
mapping is done such that the operating range Z < R. If the 
floating point number ±A is in range, and A < Z, then  

Psn = Z A                                    (3.1) 

X = x Psn                                  (3.2) 

where Psn is precision which decides the incorporation of 
digits after decimal points. 

If an adding circuit is to compute the sum of three or more 
numbers it can be advantageous to not propagate the carry 
result. Instead, three input adders are used, generating two 
results: a sum and a carry. The sum and the carry may be fed 
into two inputs of the subsequent 3-number adder without 
having to wait for propagation of a carry signal. After all 
stages of addition, however, a conventional adder (such as 
the ripple carry or the look ahead) must be used to combine 
the final sum and carry results. 

 
Fig. 3.1 Block Diagram of the Sign Detection Algorithm 

IV. SYNTHESIS OUTCOMES 

The sign detection algorithm is synthesized on XILINX ISE 
13.1, considering the FPGA KINTEX 7 target family board. 
The proposed architecture is analysed for the delay 
improvements and found better than the existing work where 
maximum unit gate delay is about 1ns for 32-Bit design and 
0.196ns of 32-Bit proposed architecture. 

The comparison is shown in the Table 1 and Table 2 below. 

Table 1: Comparison of Delay for Unit Gate Model 

Design Delay 

32-Bit Existing Architecture 1 ns 

32-Bit Proposed Architecture 0.196 ns 
 

Table 2: Comparison of Overall Delay 
Design Delay 

32-Bit Existing Architecture 19 ns 

32-Bit Proposed Architecture 15.563ns 
 

The timing summary of the synthesis model is given in the 
below table with unit gates and overall delay logic delay as 
well as route delay. 

I. CONCLUSION AND FUTURE SCOPE 

The sign detection is a integral part of the any digital logic 
circuit and should be faster in processing parallel with the 
logic calculations. To speed up sign detection process an 
algorithm is proposed in this paper which is based on the 
residue number system. This algorithm is the real factor to 
improve the detection speed. The outcomes of the proposed 
model also synthesized and found the improved delay profile 
than the existing work. The delay improvements are 
significant than the existing models.  

In the future designs for speed improvements in sign 
detection technologies can be utilized better chip 
architectures which is designed on smaller nanometer 
architecture to reduce the delay of algorithm, some 
improvements in comparator design will also help to reduce 
the delay. 
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Table 3: Timing Details of the Proposed Architecture 

 

Timing Details: 
--------------- 
All values displayed in nanoseconds (ns) 
 
========================================================================= 
Timing constraint: Default path analysis 
  Total number of paths / destination ports: 290 / 1 
------------------------------------------------------------------------- 
Delay:               15.563ns (Levels of Logic = 37) 
  Source:            x1<0> (PAD) 
  Destination:       sign_bit (PAD) 
 
  Data Path: x1<0> to sign_bit 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             4   0.003   0.574  x1_0_IBUF (x1_0_IBUF) 
     LUT5:I0->O            1   0.040   0.349  b3/p1/Y<1>33_SW0 (N01) 
     LUT5:I3->O            1   0.040   0.467  b3/p1/Y<1>33_SW1 (N16) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>33 (b3/p1/Y<1>33) 
     LUT6:I5->O            1   0.040   0.467  b3/p1/Y<1>34 (b3/p1/Y<1>34) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>35 (b3/p1/Y<1>35) 
     LUT6:I5->O            1   0.040   0.467  b3/p1/Y<1>36 (b3/p1/Y<1>36) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>37 (b3/p1/Y<1>37) 
     LUT6:I5->O            1   0.040   0.467  b3/p1/Y<1>38 (b3/p1/Y<1>38) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>39 (b3/p1/Y<1>39) 
     LUT6:I5->O            1   0.040   0.467  b3/p1/Y<1>40 (b3/p1/Y<1>40) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>41 (b3/p1/Y<1>41) 
     LUT6:I5->O            1   0.040   0.467  b3/p1/Y<1>42 (b3/p1/Y<1>42) 
     LUT6:I2->O            1   0.040   0.292  b3/p1/Y<1>43 (b3/p1/Y<1>43) 
     LUT4:I3->O            1   0.040   0.292  b3/p1/Y<1>44_SW0 (N2) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>44_SW1 (N14) 
     LUT6:I1->O            1   0.040   0.434  b3/p1/Y<1>44 (b3/p1/Y<1>44) 
     LUT6:I3->O            1   0.040   0.292  b3/p1/Y<1>46 (b3/p1/Y<1>46) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>47_SW0 (N4) 
     LUT6:I1->O            1   0.040   0.560  b3/p1/Y<1>47 (b3/p1/Y<1>47) 
     LUT6:I1->O            1   0.040   0.000  b3/p1/Y<1>48_G (N19) 
     MUXF7:I1->O           1   0.196   0.292  b3/p1/Y<1>48 (b3/p1/Y<1>48) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>49_SW0 (N6) 
     LUT6:I1->O            1   0.040   0.560  b3/p1/Y<1>49 (b3/p1/Y<1>49) 
     LUT6:I1->O            1   0.040   0.000  b3/p1/Y<1>50_G (N21) 
     MUXF7:I1->O           1   0.196   0.292  b3/p1/Y<1>50 (b3/p1/Y<1>50) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>51_SW0 (N8) 
     LUT6:I1->O            1   0.040   0.560  b3/p1/Y<1>51 (b3/p1/Y<1>51) 
     LUT6:I1->O            1   0.040   0.000  b3/p1/Y<1>52_G (N23) 
     MUXF7:I1->O           1   0.196   0.292  b3/p1/Y<1>52 (b3/p1/Y<1>52) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>53_SW0 (N10) 
     LUT6:I1->O            1   0.040   0.349  b3/p1/Y<1>53 (b3/p1/Y<1>53) 
     LUT6:I4->O            1   0.040   0.292  b3/p1/Y<1>54 (b3/p1/Y<1>54) 
     LUT5:I4->O            1   0.040   0.560  b3/p1/Y<1>55_SW0 (N12) 
     LUT6:I1->O            1   0.040   0.349  b3/p1/Y<1>55 (b3/p1/Y<1>) 
     LUT5:I3->O            1   0.040   0.279  b3/p1/Mxor_SIGN_BIT_xo<0>1  
     OBUF:I->O                 0.002          sign_bit_OBUF (sign_bit) 
    ---------------------------------------- 
    Total                     15.563ns (1.873ns logic, 13.690ns route) 
                                       (12.0% logic, 88.0% route) 
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