
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Volume-16, Number - 01, 2015

Residue Number System to Speed Up Sign
Detection in Digital Logic Circuits using FPGA

Mehul Kumar Pandya1, Prof. Sachin Bandewar3

1M-Tech Research Scholar, 2 HOD & Research Guide,
Department of Electronics & Communication Engineering, SSSCE, Bhopal

Abstract- The sign detection algorithms are sort of thing get done
using various algorithms and the digital logic can be synthesized
on different synthesis tools. The digital algorithm designed for the
sign detection is evaluated based on the area and delay profiles.
The detection speed is must higher for faster calculations. In this
paper a fast sign detection algorithm is proposed and the
algorithm utilizes residue number system to detect sign. The
proposed algorithm is designed to process 32-bits of information
processing as in existing work with lower delay. The Unit Gate
delay calculated of the proposed architecture is 0.196ns which is
80% better than the existing work and overall delay is 15.57ns.

Keywords - Sign Detection, Residue Number System, Delay, Unit
Gate Model.

I. INTRODUCTION

In general, numbers may be signed, and for binary digital
arithmetic there are three standard notations that have been
traditionally used for the binary representation of signed
numbers. These are sign-and-magnitude, one’s
complement, and two’s complement. Of these three, the
last is the most popular, because of the relative ease and
speed with which the basic arithmetic operations can be
implemented. Sign-and-magnitude notation has the
convenience of having a sign-representation that is similar
to that used in ordinary decimal arithmetic. And one’s
complement, although a notation in its own right, more often
appears only as an intermediate step in arithmetic involving
the other two notations.

The sign-and-magnitude notation is derived from the
conventional written notation of representing a negative
number by pretending a sign to a magnitude that represents a
positive number. For binary computer hardware, a single bit
success for the sign: a sign bit of 0 indicates a positive
number, and a sign bit of 1 indicates a negative number.
For example, the representation of the number positive-five
in six bits is 000101, and the corresponding representation of
negative-five is 100101. Note that the representation of the
sign is independent of that of the magnitude and takes up
exactly one bit; this is not the case both with one’s
complement and two’s complement notations.

Sign-and-magnitude notation has two representations, 000.
. . 0 and 100. . . 0, for the number zero; it is therefore
redundant. With one exception (in the context of floating-
point numbers) this existence of two representations for
zero can be a nuisance in an implementation. Addition
and subtraction are harder to implement in this notation than
in one’s complement and two’s complement notations; and as
these are the most common arithmetic operations, true sign-
and-magnitude arithmetic is very rarely implemented.

In one’s complement notation, the representation of the
negation of a number is obtained by inverting the bits in
its binary representation; that is, the 0s are changed to 1s
and the 1s are changed to 0s. For example, the representation
of the number positive-five in six bits is 000101 and
negative- five therefore has the representation 111010. The
leading bit again indicates the sign of the number, being 0
for a positive number and 1 for a negative number. We
shall therefore refer to the most significant digit as the
sign bit, although here the sign of a negative number is
in fact represented by an infinite string of 1s that in
practice is truncated according to the number of bits used in
the representations and the magnitude of the number
represented.

It is straightforward to show that the n-bit representation of
the negation of a number N is also, when interpreted as the
representation of an unsigned number, that of 2n − 1 − N .
(This point will be useful in subsequent discussions of basic
residue arithmetic.) The one’s complement system too has
two representations for zero—00. . . 0 and 11. . . 1—which
can be a nuisance in implementations. We shall see that a
similar problem occurs with certain residue number
systems. Addition and subtraction in this notation are
harder to implement than in two’s complement notation (but
easier than in sign-and-magnitude notation) and
multiplication and division are only slightly less so. For this
reason, two’s complement is the preferred notation for
implementing most computer arithmetic.

Negation in two’s complement notation consists of a bit-
inversion (that is, a translation into the one’s complement)

www.ijspr.com IJSPR | 5

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Volume-16, Number - 01, 2015

followed by the addition of a 1, with any carry from the
addition being ignored. Thus, for example, the result of
negating 000101 is 111011. As with one’s complement
notation, the leftmost bit here too indicates the sign: it is 0
for a positive number and 1 for a negative number; but
again, strictly, the sign is actually represented by the
truncation of an infinite string. For n-bit representations,
representing the negation of the number N may also be
viewed as the representation of the positive number 2n − N .

In contrast with the first two conventional notations, the
two’s complement has only one representation for zero, i.e.
00. . . 0. The two’s complement notation is the most
widely used of the three systems, as the algorithms and
hardware designs required for its implementation are quite
straightforward. Addition, subtraction, and multiplication
are relatively easy to implement with this notation, and
division is only slightly less so.

All of the notations above can be readily extended to non-
binary radices. The extension of binary sign-and-magnitude
to an arbitrary radix, r, involves representing the
magnitude in radix-r and using 0 in the sign digit for
positive numbers and r − 1 for negative numbers. An
alternative representation for the sign is to use half of the
permissible values of the sign digit (that is, 0 . . . r/2 − 1,
assuming r is even) for the positive numbers and the other
half (that is, r/2 . . . r − 1, for an even radix) for the negative
numbers.

The generalization of one’s complement to an arbitrary radix
is known as diminished-radix complement, the name being
derived from the fact that to negate a number in this
notation, each digit is subtracted from the radix diminished
by one, i.e. from r − 1.

Alternatively, the representation of the negation may also be
viewed as the result of subtracting the number from rn − 1,
where n is the number of digits used in the representations.
Thus, for example, the negation of 01432 in radix-8 is
76345, i.e. 77777 − 01432. The sign digit will be 0 for a
positive number and r − 1 for a negative number. The
generalization of two’s complement to an arbitrary radix is
known as radix complement notation.

In radix complement notation, the radix-r negation of a
number is obtained, essentially, by subtracting from rn ,
where n is the number of digits used in the representations.
Alternatively, negation may also be taken as the formation
of the diminished-radix complement followed by the addition
of a 1. Thus, for example, the radix-8 negation of 01432 is

76346, i.e. 100000 − 01432 or 77777 − 01432 + 1. The
determination of sign is similar to that for the radix-r
diminished-radix complement.

II. RESIDUE NUMBER SYSTEM

Residue number systems are based on the congruence
relation, which is defined as follows. Two integers, a and b
are said to be congruent modulo m if m divides exactly the
difference of a and b; it is common, especially in
mathematics tests, to write a ≡ b(mod mi) to denote this.
Thus, for example, 10 ≡ 7(mod 3), 10 ≡ 4(mod 3), 10 ≡
1(mod 3) and 10 ≡ −2(mod 3). The number m is a modulus
or base, and we shall assume that its values exclude unity,
which produces only trivial congruences. For unsigned
numbers, that range is [0,M−1]. Representations in a system
in which the moduli are not pairwise relatively prime will not
be unique; two or more numbers will have the same
representation.

Advantages :

Most important advantage of residue arithmetic over
conventional arithmetic is the absence of carry propagation,
in the two main operations of addition and multiplication,
and the relatively low precisions required ranging to
individual prime or co-prime number of the moduli set,
which enables LUT implementations in various operations.
In practice, these may make residue arithmetic worthwhile,
even though in terms of practical applications such arithmetic
has little fields over conventional arithmetic to cover.
However the concept of ’break and process’ can be very
useful in places where integer arithmetic is predominant.
However, the fields of Communication and Signal Processing
are yet to be explored thoroughly for application on RNS

Basic advantages of residue arithmetic are:

• High Speed
• Low Power
• Superior Fault Tolerance
• Reduction of Computational Load

Limitations and Constraints in Residue Arithmetic On
completion of extensive literature survey the following
problem statements were de- fined:

• Magnitude Calculation
• Sign Detection
• Overflow Detection and Correction

www.ijspr.com IJSPR | 6

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Volume-16, Number - 01, 2015

III. PROPOSED METHODOLOGY

For sign detection a trite technique was used. In this a sign
bit was introduced as 32nd bit. This results in a signed bit
representation of a number. Operating on floating numbers is
a difficult task in residue arithmetic. Hence we convert the
floating point number to an integer in a range ±Z. The
mapping is done such that the operating range Z < R. If the
floating point number ±A is in range, and A < Z, then

Psn = Z A (3.1)

X = x Psn (3.2)

where Psn is precision which decides the incorporation of
digits after decimal points.

If an adding circuit is to compute the sum of three or more
numbers it can be advantageous to not propagate the carry
result. Instead, three input adders are used, generating two
results: a sum and a carry. The sum and the carry may be fed
into two inputs of the subsequent 3-number adder without
having to wait for propagation of a carry signal. After all
stages of addition, however, a conventional adder (such as
the ripple carry or the look ahead) must be used to combine
the final sum and carry results.

Fig. 3.1 Block Diagram of the Sign Detection Algorithm

IV. SYNTHESIS OUTCOMES

The sign detection algorithm is synthesized on XILINX ISE
13.1, considering the FPGA KINTEX 7 target family board.
The proposed architecture is analysed for the delay
improvements and found better than the existing work where
maximum unit gate delay is about 1ns for 32-Bit design and
0.196ns of 32-Bit proposed architecture.

The comparison is shown in the Table 1 and Table 2 below.

Table 1: Comparison of Delay for Unit Gate Model

Design Delay

32-Bit Existing Architecture 1 ns

32-Bit Proposed Architecture 0.196 ns

Table 2: Comparison of Overall Delay
Design Delay

32-Bit Existing Architecture 19 ns

32-Bit Proposed Architecture 15.563ns

The timing summary of the synthesis model is given in the
below table with unit gates and overall delay logic delay as
well as route delay.

I. CONCLUSION AND FUTURE SCOPE

The sign detection is a integral part of the any digital logic
circuit and should be faster in processing parallel with the
logic calculations. To speed up sign detection process an
algorithm is proposed in this paper which is based on the
residue number system. This algorithm is the real factor to
improve the detection speed. The outcomes of the proposed
model also synthesized and found the improved delay profile
than the existing work. The delay improvements are
significant than the existing models.

In the future designs for speed improvements in sign
detection technologies can be utilized better chip
architectures which is designed on smaller nanometer
architecture to reduce the delay of algorithm, some
improvements in comparator design will also help to reduce
the delay.

CSA mod 2n Comparator

Carry Generation Unit

Post Processing Unit

x2 = x1'

W

Sign
Bit

3

n-
1 n

C S

n n n nnx1n

x1' x2

x2 x3

x1,
nx2>x1'

x1,
n

x1,n-1

n-1

www.ijspr.com IJSPR | 7

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Volume-16, Number - 01, 2015

Table 3: Timing Details of the Proposed Architecture

Timing Details:

All values displayed in nanoseconds (ns)

===
Timing constraint: Default path analysis
 Total number of paths / destination ports: 290 / 1

Delay: 15.563ns (Levels of Logic = 37)
 Source: x1<0> (PAD)
 Destination: sign_bit (PAD)

 Data Path: x1<0> to sign_bit
 Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 IBUF:I->O 4 0.003 0.574 x1_0_IBUF (x1_0_IBUF)
 LUT5:I0->O 1 0.040 0.349 b3/p1/Y<1>33_SW0 (N01)
 LUT5:I3->O 1 0.040 0.467 b3/p1/Y<1>33_SW1 (N16)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>33 (b3/p1/Y<1>33)
 LUT6:I5->O 1 0.040 0.467 b3/p1/Y<1>34 (b3/p1/Y<1>34)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>35 (b3/p1/Y<1>35)
 LUT6:I5->O 1 0.040 0.467 b3/p1/Y<1>36 (b3/p1/Y<1>36)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>37 (b3/p1/Y<1>37)
 LUT6:I5->O 1 0.040 0.467 b3/p1/Y<1>38 (b3/p1/Y<1>38)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>39 (b3/p1/Y<1>39)
 LUT6:I5->O 1 0.040 0.467 b3/p1/Y<1>40 (b3/p1/Y<1>40)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>41 (b3/p1/Y<1>41)
 LUT6:I5->O 1 0.040 0.467 b3/p1/Y<1>42 (b3/p1/Y<1>42)
 LUT6:I2->O 1 0.040 0.292 b3/p1/Y<1>43 (b3/p1/Y<1>43)
 LUT4:I3->O 1 0.040 0.292 b3/p1/Y<1>44_SW0 (N2)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>44_SW1 (N14)
 LUT6:I1->O 1 0.040 0.434 b3/p1/Y<1>44 (b3/p1/Y<1>44)
 LUT6:I3->O 1 0.040 0.292 b3/p1/Y<1>46 (b3/p1/Y<1>46)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>47_SW0 (N4)
 LUT6:I1->O 1 0.040 0.560 b3/p1/Y<1>47 (b3/p1/Y<1>47)
 LUT6:I1->O 1 0.040 0.000 b3/p1/Y<1>48_G (N19)
 MUXF7:I1->O 1 0.196 0.292 b3/p1/Y<1>48 (b3/p1/Y<1>48)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>49_SW0 (N6)
 LUT6:I1->O 1 0.040 0.560 b3/p1/Y<1>49 (b3/p1/Y<1>49)
 LUT6:I1->O 1 0.040 0.000 b3/p1/Y<1>50_G (N21)
 MUXF7:I1->O 1 0.196 0.292 b3/p1/Y<1>50 (b3/p1/Y<1>50)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>51_SW0 (N8)
 LUT6:I1->O 1 0.040 0.560 b3/p1/Y<1>51 (b3/p1/Y<1>51)
 LUT6:I1->O 1 0.040 0.000 b3/p1/Y<1>52_G (N23)
 MUXF7:I1->O 1 0.196 0.292 b3/p1/Y<1>52 (b3/p1/Y<1>52)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>53_SW0 (N10)
 LUT6:I1->O 1 0.040 0.349 b3/p1/Y<1>53 (b3/p1/Y<1>53)
 LUT6:I4->O 1 0.040 0.292 b3/p1/Y<1>54 (b3/p1/Y<1>54)
 LUT5:I4->O 1 0.040 0.560 b3/p1/Y<1>55_SW0 (N12)
 LUT6:I1->O 1 0.040 0.349 b3/p1/Y<1>55 (b3/p1/Y<1>)
 LUT5:I3->O 1 0.040 0.279 b3/p1/Mxor_SIGN_BIT_xo<0>1
 OBUF:I->O 0.002 sign_bit_OBUF (sign_bit)
 --
 Total 15.563ns (1.873ns logic, 13.690ns route)
 (12.0% logic, 88.0% route)

www.ijspr.com IJSPR | 8

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Volume-16, Number - 01, 2015

REFERENCES

[1] R. Zimmermann, “Efficient VLSI implementation of modulo
(2n �} 1) addition and multiplication,” in Proc. 14th IEEE
Symp. Comput. Arithmetic, 1999, pp. 158–167.

[2] T. Tomczak, “Fast sign detection for RNS {2n − 1, 2n, 2n +
1},” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6,
pp. 1502–1511, Jul. 2008.

[3] P. Mohan, “RNS-to-binary converter for a new three-moduli
set {2n+1 − 1, 2n, 2n − 1},” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 54, no. 9, pp. 775–779, Sep. 2007.

[4] K. Furuya, “Design methodologies of comparators based on
parallel hardware algorithms,” in Proc. 10th ISCIT, Oct. 2010,
pp. 591–596.

[5] T. V. Vu, “Efficient implementations of the Chinese remainder
theorem for sign detection and residue decoding,” IEEE Trans.
Comput., vol. 34, no. 7, pp. 646–651, Jul. 1985.

[6] Z. Ulman, “Sign detection and implicit-explicit conversion of
numbers in residue arithmetic,” IEEE Trans. Comput., vol. 32,
no. 6, pp. 590–594, Jun. 1983.

[7] S. Bi and W. Gross, “The mixed-radix Chinese remainder
theorem and its applications to residue comparison,” IEEE
Trans. Comput., vol. 57, no. 12, pp. 1624–1632, Dec. 2008.

[8] N. Szabo, “Sign detection in nonredundant residue systems,”
IRE Trans. Electron. Comput., vol. EC-11, no. 4, pp. 494–500,
Aug. 1962.

[9] S. Piestrak, “Design of residue generators and multioperand
modular adders using carry-save adders,” IEEE Trans.
Comput., vol. 43, no. 1, pp. 68–77, Jan. 1994.

[10] E. Al-Radadi and P. Siy, “RNS sign detector based on Chinese
remainder theorem II (CRT II),” Comput. Math. Appl., vol. 46,
nos. 10–11, pp. 1559–1570, 2003.

www.ijspr.com IJSPR | 9

