State-of-Art Survey on Recommender Systems: Techniques and Issues

S. Archana¹, K. Indira²

¹PG Student, ²Assistant Professor

Abstract - Recommender systems are the techniques used to predict the rating of one individual will give to an item or social entity. There are wide ranges of items on which individuals have different choices. It aims to deliver users with personalized online item or service recommendations to handle the increasing online information overhead problem and develop customer relationship management. In this paper, we have highlighted the techniques of recommender systems with its merits, demerits, survey on issues with its solutions and its research issues.

Keywords: Recommender systems, issues, techniques.

I. INTRODUCTION

Recommender systems have become very popular in modern years and used in various web applications. They have become an important research area. They can be defined as programs that recommend the most apt items to specific users by predicting a user's interest in an item based on allied information about the items, the users and the relations between items and users [1].

Recommender systems are a subdivision of information filtering system used to forecast 'rating' or 'preferences' that a user would give to an item or social factor. Recommendation systems concern data mining techniques and prediction algorithms to foresee users' curiosity on information and products among the tremendous amount of offered items. These recommender systems are used widely to overcome the information overload problem.

The first recommender system was developed by Golderg, Nichols and Terry in1992. Tapestry an electronic messaging system which allowed users to either rate messages as "good or bad". The applications of recommender systems include recommending images, music, movies, websites, television programs, books, documents, conferences, news, tourism spots and learning materials [2]. It also adapts the areas of ecommerce, e-learning, e-government, e-library and ebusiness services.

II. RECOMMENDER SYSTEMS CLASSIFICATION

Recommender systems are classified into variety of approaches Fig 1. that have been used to provide recommendations for users.

1) Content-based recommender systems

Content-based (CB) approach recommends articles or products that are similar to items previously preferred by a particular user. The vital principles of CB recommender systems are:-

- i. To explore the depiction of the items preferred by a specific user to determine the primary common preference that can be used to differentiate these items. These preferences are stored in a user profile.
- ii. To evaluate each item's preferences with the user profile so that only items that have a high degree of similarity with the user profile will be recommended [3].

This recommender system uses two techniques to generate recommendations. One technique is using information retrieval methods and other technique is using statistical learning and machine learning methods.

2) Collaborative filtering-based recommender systems

Collaborative filtering (CF)-based approach help specific user to make choices based on the ratings of other people who share similar interests. The CF technique can be classified as:-

2.1 Memory-based Collaborative filtering approach

This approach uses item-to-item or user-to-user correlations to make prediction for user on upcoming items. Prediction is done using the complete or a section of the user-item database. The similarity among users or items can be calculated by cosine-based similarity, Pearson correlation-based similarity [4], constrained Pearson correlation-based similarity. This approach can be classified into *two* types:

- *User-based CF* specific user will receive recommendations of items liked by similar users.
- *Item-based CF* specific user will receive recommendations of items that are related to those they have liked in the earlier period.

2.2 Model-based Collaborative filtering approach

This approach gives recommendations to users based on learned models. It analyzes the training data, review the complicated patterns into the learned models, and then make predictions based on those models. This approach can be classified into two types:

- Cluster Model- collection of preferences is taken by definite groups or kind of users that are similar in their clusters[8].
- Bayesian Network-items are represented as nodes and the feasible rating value is determined from the state of each node.

3) Knowledge-based recommender systems

Knowledge-based (KB) approach recommends items to users based on the explicit knowledge about the users, items and/or their relationships [5]. Common expressions of KB approach are retaining functional knowledge base, case-based reasoning, ontology-based.

Hybrid recommender systems **4**)

Hybrid approach recommends users by combining best features of two or more recommendation methods into a hybrid method to achieve synergism between them. Depending on data characteristics and domain, several hybridization techniques are weighted, mixed, switching, feature combination, cascade, feature augmentation and meta-level are used. Different ways of hybridization [6]:

- i. Implementing CF and CB individually and combine their applications
- ii. Incorporating several content based characteristics into collaborative approach
- iii. Incorporating several collaborative characteristics into content based approach
- iv. Construct a general consolidative model that incorporate both CF and CB characteristics

Demographic recommender systems 5)

Demographic recommendation approach uses information about user only. The demographic types are age, gender and knowledge of languages, ethnicity, disabilities, employment status, mobility, home ownership and location. This approach recommends items to the users according to the demographic similarities of the users[7].

Fig 1. Recommender Systems classification

III. STATE-OF-ART SURVEY ON ISSUES AND **SOLUTIONS**

1) Cold start

and Fusion

for Large-

Scale Social

Recommen

der Systems, ang et al

[12]

Cold start problem refers to the state when a new user or item just enters the system [6]. Kinds of cold start problems are: - new user problem and new item problem. It's challenging to give recommendations for new user as there is very little information about the user and also for new item as there are no ratings for that item.

Paper Name/YearAuthorProblem CharacteristicsMethodoEnhancing Collaborati ve Filtering by User InterestExploiting the informationiExpan about the user'scollaborati interaction with filtering-t the systems; the informationrecommend system by about latent user	TABLE 1. SURVET ON COLD START				
Name/YearCharacteristicsInterventionEnhancing Collaborati ve Filtering by User InterestExploiting the information about the user's interaction with the systems; the information system by about latent useriExpansion iExpansion	Methodology				
Enhancing Collaborati ve Filtering by User InterestExploiting the informationiExpan iExpan about the user's interaction with the systems; the informationQi Liu et ExpansionQi Liu et al [11]information informationsystem by system by about latent user	8,				
Personalize d Ranking, IEEE 2012 interests is expansio largely personal underexplored rankin	d, ative based ender y user st n via ized ng				
Cold-StartCold-startRecommenCold-startdationproblem thatUsing Bi-denotes aClusteringDagiangzhsituation thatfusion(Bi	ering				

social media

sites fail to draw

recommendation

for new items, users or both

TABLE 1 SURVEY ON COLD START

newly

fashioned

scheme

IEEE 2013			
ILLL 2013		The area for a to an	Thursday 1
		The new factors	Three social
		of social	factors,
Personalize		network like	personal
d		interpersonal	interest, interper
Recommen		influence and	sonal interest
dation		interest based on	similarity, and
Combining	Vuomina	circles of friends	interpersonal
User	Auenning Oion at al	bring	influence, fuse
Interest and	Qian et ai	opportunities	into a unified
Social		and challenges	personalized
Circle,		for	recommendatio
IEEE 2014		recommender	n model based
		system (RS) to	on probabilistic
		solve the cold	matrix
		start	factorization

2) Sparsity

Usually, data of recommender system like MovieLens is represented in form of user-item matrix colonized by ratings given to movies and as number of users and items increases the matrix extent and sparsity evolves. The main reason of data sparsity is that the majority of users do not rate most of the items and the offered ratings are usually sparse [9]. Collaborative filtering is dependent over the rating matrix in most cases hence it leads to this problem.

TABLE 2. SURVEY ON SPARSITY

Paper	Author	Problem	Methodolog	
Name/Yea		Characterist	У	
r		ics		
A Cross-	Sheng	Suffer from	Cross-	
Domain	gao et	the data	domain	
Recommen	al[13]	sparsity	recommendat	
dation		problem	ion model,	
Model for			domain	
Cyber-			specific	
Physical			rating	
Systems,			patterns in	
IEEE 2013			each domain	
			involving	
			discriminativ	
			e information	
			propitious to	
			performance	
			improvement.	
TST:	FengXie	Inaccurate	Threshold	
Threshold	et al	similarities	based	
Based		derived from	Similarity	
Similarity		the sparse	Transitivity	
Transitivity		user-item	(TST)method	

	aoman
	specific
	rating
	patterns in
	each domain
	involving
	discriminativ
	e information
	propitious to
	performance
	improvement.
Inaccurate	Threshold
similarities	based
derived from	Similarity
the sparse	Transitivity
user-item	(TST)method
	Inaccurate similarities derived from the sparse user-item

Method in		associations	
Collaborati		would	
ve Filtering		generate the	
with Cloud		inaccurate	
Computing		neighborhoo	
, 2013		d for each	
		user or item	
An	XinLuo	Current non-	NMF-based
Efficient	et al	negative MF	CF model
Non-		(NMF)	with a single-
Negative		models are	element-
Matrix-		mostly	based
Factorizati		designed for	approach
on-Based		problems in	
Approach		computer	
to		vision, while	
Collaborati		CF problems	
ve Filtering		differ from	
for		them due to	
Recommen		their extreme	
der		sparsity of	
Systems,		the target	
2014		rating matrix	
A Memory-	Coello et	Sparse rating	Similarity
based	al [14]	data	between
Collaborati			users is
ve Filtering			computed
Algorithm			using the
for			Pearson
Recommen			correlation
ding			coefficient,
Semantic			extended to
Web			consider also
Services,			the ratings of
IEEE 2013			users for
			similarity
			services

3) Overspecialization

Overspecialization problem is the system that can only recommend items based on a user's profile; the user is limited to being recommend items that are similar to those already rated.

Paper	Author	Problem	Methodolo
Name/Yea		Characteristi	gy
r		cs	
Providing	Yolanda	Due to the use	Applying
Entertainm	Blanco	of syntactic	reasoning

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) Volume-16, Number - 02, 2015

ent by	Fernánde	similarity	techniques
Content-	z et al	metrics, these	borrowed
based		systems	from the
Filtering		elaborate	Semantic
and		overspecialize	Web
Semantic		d	
Reasoning		recommendati	
in		ons including	
Intelligent		products very	
Recommen		similar to	
der		those the user	
Systems,		already know.	
2008			
Enhancing	Qi Liu et	Exploiting the	iExpand ,
Collaborati	al [11]	information	collaborativ
ve Filtering		about the	e filtering-
by User		user's	based
Interest		interaction	recommend
Expansion		with the	er system by
via		systems; the	user interest
Personalize		information	expansion
d Ranking,		about latent	via
IEEE 2012		user interests	personalized
		is largely	ranking
		underexplored	

4) Performance & Scalability

The important issues for recommendation systems are performance and scalability as e-commerce websites must be capable to find out recommendations even though the increase of users and items. Scalability is the property of system indicates its ability to handle growing amount of information in a smooth manner [10]. With enormous growth in information over internet it is obvious that the recommender systems are having an explosion of data.

Paper	Author	Problem	Methodology	
Name/Ye		Characteris		
ar		tics		
A Hybrid	Sang	Scalability	Hybrid	
Recomm	Hyun	and sparsity	recommendation	
endation	Choi et	are major	algorithm	
Method	al	problems in	HYRED, which	
with		large-scale	combines CF	
Reduced		recommenda	using the	
Data for		tion systems.	modified	
Large-			Pearson's binary	
Scale			correlation	

Applicati			coefficients with
on, 2010			CB filtering
			using the
			generalized
			distance-to-
			boundary-based
			rating
KASR: A	Shunm	Present the	Keyword-Aware
Keyword	eiMeng	same ratings	Service
-Aware	et al	and rankings	Recommendation
Service	[16]	of services	method, named
Recomm		to different	KASR
endation		users	
Method		without	
on		considering	
MapRedu		diverse	
ce for		users'	
BigData		preferences,	
Applicati		and	
ons, 2014		therefore	
		fails to meet	
		users'	
		personalized	
		requirements	
LARS*:	Moham	Spatial	LARS*, a
An	ed	ratings for	location-aware
Efficient	Sarwat	non-spatial	recommender
and	et al	items, non-	system
Scalable	[17]	spatial	
Location-		ratings for	
Aware		spatial items	
Recomm		and spatial	
ender		ratings for	
System,		spatial items	
2014			

5) User input consistency

Recommendation methods like collaborative filtering or demographic that work with user-to-user correlations depend on more correlation coefficients among the users in a dataset. Users can be classified into three types based on their correlation coefficients with other users.

- i. White sheep- there is high rating correlation with many users
- ii. Black sheep- there are only few or no correlating users
- iii. Gray sheep- low correlation coefficients with many users are resulted from users having dissimilar opinions or an unusual taste.
- 6) Privacy

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) Volume-16, Number - 02, 2015

Privacy has been the most important problem in recommender systems. То provide personalized recommendations, recommendation services must know something regarding to users. The more the systems know, the more accurate the recommendations can be obtained. These privacy impinge on both the collection of explicit and implicit data. Concerning explicit data, users are not interested to reveal information about themselves and their interests. If questionnaires get too delicate, users may give bogus information in order to shield their privacy.

TAB	LE 5. S	SURVEY	ON PR	IVACY
	1			

Paper Name/ Year	Autho r	Problem Characterist ics	Methodology
An algorith m for efficien t privacy - preservi ng item- based collabor ative filtering	Dongs heng et al [15]	Privacy issue arises in this process as sensitive user private data are collected by the recommende r server	Efficient privacy- preserving item- based collaborative filtering algorithm is used, which can protect user privacy during online recommendation process without compromising recommendation accuracy and efficiency

IV. PROS AND CONS OF RECOMMENDATION METHODS

Technique s	Advantages	Disadvantages
Content- based filtering	 No need for data of other users No cold start and sparsity Able to recommend new and unpopular items Does not depend on the user ratings of items in the database 	 Overspecializ ation Limited content analysis New user problem Unable to exploit quality judgments of other users.
Collaborat	• Recommend	• System would

ive	most appropriate	not be very
filtering	items to users	effective
	which are	when user
	personalized at	preferences
	the same time	change
	• Accuracy of	unexpectedly
	their prediction	Data sparsity
	increases	• User input
	enormously as	consistency
	and when more	• Gray sheep
	user preferences	problem
	are added to the	
	database	
Knowledg	• Sensitive to	• User must
e-based	changes of	input utility
	preference	function
	• Mapping from	Knowledge
	user needs to	engineering is
	products	required
Demograp	• Not based on	• Privacy issues
hic	user-item ratings,	occur because
	it gives	of gathering
	recommendation	demographic
	before user rated	data
	any item	• Gray sheep
	• Domain	problem
	independent	
	since item	
	feature is not	
	needed	

V. FUTURE EXERTION

Based on CB, CF and hybrid recommendation methods several recommendation systems have been proposed and as of now most of them are able to solve the problems while providing better recommendations. However, due to information overhead it is required to work on this research area to explore and provide new methods that can provide recommendation in a wide range of applications.

REFERENCES

- J.Bobadilla, F.Ortega, A.Hernando, A.Gutiérrez, "Recommender systems survey", Knowledge-Based Systems, 2013
- [2] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, Guangquan Zhang, "Recommender system application developments: A survey", ELSEVIER, 2015
- [3] M. Pazzani, D. Billsus, Content-based recommendation systems, The Adaptive Web, Springer, Berlin Heidelberg 2007.

- [4] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, "GroupLens: an open architecture for collaborative filtering of netnews", Proceedings of the ACM Conference on Computer Supported Cooperative Work, ACM, Chapel Hill, North Carolina,USA, 1994.
- [5] R. Burke, "Hybrid recommender systems: survey and experiments, User Modelling and User-Adapted Interaction", 2002.
- [6] G.Adomavicius, A.Tuzhilin, "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions", IEEE Transactions on Knowledge and Data Engineering, 2005.
- [7] M. Pazzani, "A framework for collaborative, content-based and demographic filtering", Artificial Intelligence Review, 1999.
- [8] Breese, J. S, Heckerman, D, Kadie, C., "Empirical Analysis of Predictive Algorithms for Collaborative Filtering." Microsoft Research, 1998.
- [9] Yibo Chen, Chanle Wu, Ming Xie and Xiaojun Guo, "Solving the Sparsity Problem in Recommender Systems Using Association Retrieval", Journal of Computers, 2011.
- [10] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis, Elias Theoharopoulos, "Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms", ISMIS 2005.
- [11] Qi Liu, Enhong Chen, Hui Xiong, Chris H. Q. Ding and Jian Chen, "Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking", IEEE Transactions on Systems, man and Cybernetics Vol.42, No.1, February 2012.
- [12] Daqiang zhang, Ching hsienhsu, Min chen, Quanchen, Naixuexiongand Jaime lloret, "Cold-Start Recommendation Using Bi-Clustering and Fusion for Large-Scale Social Recommender Systems", IEEE transactions on Emerging Topics in Computing, 2014.
- [13] Sheng gao, Haoluo, Da chen, Shantao li, Patrick gallinari, Zhanyu ma, and Jun guo, "A Cross-Domain Recommendation Model for Cyber-Physical Systems", IEEE Transactions on Emerging Topics in Computing, 2013.
- [14] J. M. A. Coello, Y. Yuming and C. M. Tobar "A Memorybased Collaborative Filtering Algorithm for Recommending Semantic Web Services", IEEE Latin America Transactions, Vol.11, No.2, March 2013.
- [15] Dongsheng Li, Chao Chen, Qin Lv, Li Shanga, Yingying Zhao, TunLu, NingGu, "An algorithm for efficient privacypreserving item-based collaborative filtering", ELSEVIER 2014.
- [16] Shunmei Meng, Wanchun Dou, Xuyun Zhang, and Jinjun Chen, "KASR: A Keyword-Aware Service Recommendation Method on MapReduce for Big Data Applications", IEEE Transactions on Parallel and Distributed Systems, Vol.25, No.12, December 2014.
- [17] Mohamed Sarwat, Justin J. Levandoski, Ahmed Eldawy, and Mohamed F. Mokbel, "LARS*: An Efficient and Scalable Location-Aware Recommender System", IEEE Transactions on Knowledge and Data Engineering, Vol.26, No.6, June 2014.