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Abstract - Landing gear is undoubtedly the most complex
structure in the design of an aircraft. Even after years of study,
Shimmy oscillations are still a problem in the design and
operation of an aircraft. In the present work, Mathematical
models are developed and simulated in MATLAB to study the
dynamic response of a nose landing gear to understand the
concept of shimmy in an easier way. Firstly a linear model of
nose landing gear is developed and the time histories of the
vertical displacements are simulated. This simulation proves
very effective t0 understand the problem of shimmy if the
parameters are considered 10 be linear in behavior The results
are also validated. Further, 10 convert this linear relations to
non linear ones(which are more realistic to occur) , a non
linear mathematical model is developed. Here the stability
boundaries are simulated 10 understand the regions of stability.
Also the stability boundaries are analyzed for damping
parameters Which are directly related t0 the intensity of the
oscillations. Relaxation length and vertical force, two of the
most important parameters are varied and their stability
regions are plotted.

Keywords :shimmy vibrations, mathematical models, linear
model,

I.  INTRODUCTION

Shimmy is the self-excited violent vibrations of the
aircraft Landing gear with respect to the runway surface. It
is often describes as a conversion of the kinetic energy
resulting from the forward motion of the aircraft vehicle
during landing or taxiing. In some cases it may be due to
the resonance when the vertical oscillations of the landing
gear equals the natural frequency of vibrations of the
aircraft[1]. As such, there are numerous ways for studying
this complex shimmy phenomenon, some of which are
very complex(models of hundreds of DOF) and hence
require tons of calculations.

Shimmy being complex and nonlinear in nature, is often
very difficult to explain in terms of certain pre-decided
parameters. Torsional and lateral bending interacts with
the landing gear shimmy [2], thus leading to the study of
bifurcation diagrams. Geometric coupling and mechanical
freeplay [3] also plays a major role in shimmy whereas a
commonly neglected parameter of dry friction [4][5] also
adds to the shimmy phenomenon. Owing to such diversity
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in parametric effects, various methods are used for
analysis and simulation. Developing mathematical models
thus proves to be an effective way to understand and
analyze this phenomenon quite easily.

In this present work, two simple mathematical models are
considered for the study and analysis of this shimmy
phenomenon .The first model is a linear model for a
simple nose landing gear in which the time histories for
vertical displacements are simulated. The effect of spring
and damper system is studied in this case. In the second
model a nonlinear  mathematical shimmy model is
considered which also takes into account the effect of
lateral and torsional vibrations and the various effects of
tire deformation. The stability boundaries are simulated
for various parameters to understand the effect of varying
damping constant on the stability of the landing gear.

Il.  LINEAR MATHEMATICAL MODEL

A linear generic mathematical model is being considered
to study the behavior of Shimmy Vibrations on a
generalized aircraft. Mass M is the mass of the entire
aircraft whereas mass m is the mass of the landing gear
system. A suspension system is developed in the model
with the help of a spring and a damper. A suspension
system with spring k1 and damper cl is considered
between the landing gear system and a suspension with
spring k2 and damper c2 between the aircraft(including
the fuselage) and the landing gear system.

The results are simulated without the shimmy dampers
and hence the value of c2 is 0.Hence damper c2 is not
considered while formulating the equations for the
same.The results are verified as in [6].

Parameter Value Units
Mass of tire, collar, damper fluid , 2000 Kg
fuselage, M
Mass of landing gear, m 30 kg

1750000 N/m
651000 N/m

Stiffness of suspension spring 1, k1

Stiffness of spring 2, k2

Initial displacement,  Xg 0 M
Damping coefficient, ¢ 1110 N/m
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Acceleration due to gravity, ¢ 9.81 m/s°

Displacement of masses M and m, - m

X1 (1), Xo(t)

Table 1.Values of various Parameters used for the Linear
Model

To solve the differential equations, the initial conditions
are as follows-

1(0) = [7,(0) = 0.1 /7
[h(0) = [5,(0) =02 1/ 17
ANALYTICAL MODELING
CASE 1

In this case, the base, i.e. the runway is considered to be
passive and hence no surface irregularities are considered
while simulating the model.

M ——— x2(1t)

k2 c2
x1(t)

ki c1

Fr il
Figure 1. Linear Mathematical Model
Equation of motion for the same is given by-
Obn+ O,(05— 07+ (Op+ Op) 05— O050,= 0
O+ O,(00;- 07) — 0505+ 050, = 000
The complete solution for the system of equations is given
by-

(L)

=0 00000 %P7 0no(oo. ooo - 0000

+ 0. 00000 PPPP0 ono(ooo. 000 — O. 0000)
+ 00000

O(0)

= 7. 000 %700 000(00. 000 - 0. 000)
+ 0. oooooo PPEP aoo(ooo. 000

- 0.0000)+ 00000

The results are simulated in MATLAB as follows. x(t)
shows the vibrations in the landing gear-base vertical
plane whereas X,(t) shows the vibrations in the main
aircraft vertical plane.
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displacement x1(t)
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Figure 2.Time history of displacement X (t)

displacement x2(1)

E ................................................................
5w w @ 7w @
time t [sec)]
Figure 3.Time history of displacement X (t)
CASE 2

In this case the base surface is excited in the model, i.e.
the irregularities of the runway are taken into account as
follows-

M —— x2(t)

k> c2

Xl(t)

ki1 c1

Figure 4.Linear Mathematical Model with Base Excitation
The equation of motion for this model is

OLn+ O(05= 07+ (Op+ Og) 05— 050, =
0,00000

The values are same as that of the previous case and the
harmonic excitation is assumed to be 0.2sin10t.

The complete solution for this system of equations is
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Os(0)

=0 0000 %07 aon(oo. 000 - 0. oo0)

+ 0. ooooo PP PEY oao(ooo. 000 — 0. 0000)
+ 0. 00000000- 0.00x 00000000

+ 00000

Op(0)

= 0 oo0 %Pt ooo(oo. ooo - 0. 000y

+ 0. ooooo PrPPt ono(ooo. 000 — 0. 0000)
+ 0000000000 0.00%x 007000000

+ 00000

The simulation results are as follows

dizgplacernent x1(t) with base excitation
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Figure 5.Time History of Displacement X4 (t) with base
excitation

displacerment x2(t) with base excitation
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Figure 6.Time history of displacement X, (t) with base
excitation

1. NON LINEAR MATHEMATICAL MODEL

tire moments \
MMy e ""%(\ring and damping

loments MM,
S
|
o

yaw
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tire side  lateral shift y; of leading
force ¥, contact point

Figure 7.Top view of Non- Linear Mathematical Model
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The nonlinear mathematical shimmy model, as shown in
figure, consists of the torsional dynamics of the landing
gear, the forces and the moments, and of approximations
to describe the tire's elastic lateral qualities. The figure for
the same is from [8]

Table 2.Values of various parameters used in Non-linear

Model.

Parameter Value Unit
Half contact length a 0.1 m
Caster length e 0.1 m
Moment of Inertia |, 1.0 Kg m?
Torsional spring rate ¢ -100000 Nm/rad
Side force derivative Cg, 20 1/rad
Moment derivative Cyy -2 m/rad
Tread width moment constant -270 Nm?/rad
Relaxation length c=3*a 0.3 m
Vertical force F; 9000 N
Torsional damping constant k 0-(-50) | Nm/rad/s
Velocity V 0-80 m/s

The stability boundary in (-k)-V plane with the parameter
set p3 represents the case for varying parameters during
landing. It is quadratic in k as follows:

[P+ [0+ [13=0

Where coefficients b, by, b are functions of (V,p) as
follows-

Oy = 2o

[y = [Bls— 005 000+ 2000— (200
+ 004,000 — 0,005 000
+ R0 0

Ty =(0,000,0, = 0,000, + 007,
— 9,000,000, 4 7,00, (70,
— 0,004,005+ 0P 0p,04) P
+ 0,05, 000— 0,00, 000
+ (IR = [P0 = [0, [0
+ R0 0

The equation have two solutions, both are valid but one of
branches is positive and thus is physically meaningless
value of k.

IV. SIMULATION RESULTS

In figure 8, relaxation length o is varied in k-V plane to
study its effect. For small values of o (6<0.1m), the
instability is more at smaller velocities and the stability is
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more at large velocities. Whereas for relaxation length o
(6>0.1m), the stability is more at smaller velocities and
the instability is more at larger velocities.

Yariation of relaxation length
120 F—— T T T = T e e " T =

100 - i

&0

40 . e ...... ST

20

damping constant (-k) [Nrm/rad/s]

............................

- TR R
“elocity % [mfs|
Figure 8.Variation of Damping Constant (-k) with velocity

V for different values of relaxation length ¢

In figure 9, the vertical force FZ is varied in the k-V plane
to study the effect of load on stability region. This
variation of vertical force is important because values of
FZ may change due to weight, acceleration, and braking
during landing and taxiing. As the force and vertical
velocity V increase, a larger value of k is needed for
stability. From the simulation results, below V=16 m/s,
there is no instability for negative damping coefficients.

Wariation of Wertical Force Fz

damping constant (-k) [Nm/radis]

I S . S
10 20 30 40 50 60 70 a0 a0
YWelocity ¥ [m/s]

20F

Figure 9.Variation of Damping constant (-k) with velocity
V for different values of Vertical Force Fz.

V. CONCLUSION

Two different mathematical models were developed to
study the effect of the key parameters on shimmy of
aircraft Landing gears. Different analytical methods were
applied to study these mathematical models.

Firstly, a simple linear mathematical model was developed
to study the vibrations in the vertical-Y direction. Two
cases were considered, a model with simple landing and a
model with base excitation. The time histories of vertical
displacements at the runway-landing gear and landing
gear-main aircraft were simulated in MATLAB for both
the cases. With base excitation the shimmy vibrations
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were more and hence this plays a very important part in
shimmy analysis.

The main purpose of using the linear model was that it
reduces the complexity of the system and hence makes it
easy to analyze and simulate the behavior. But in actual
practice, the behavior of the landing gear is nonlinear. It
is observed that the instability in the linear model causes
shimmy in nonlinear model.

A nonlinear model was considered to study the actual
dynamic response of the same. The focus of this model
was to study the effect of variation of damping constant (-
k) on various parameters such as velocity, relaxation
length of tire deflection ¢ , and vertical force FZ. The
results were simulated in MATLAB and were validated as
in [8] .

For different relaxation lengths o, it was observed that
small values of ¢ cause more stability at small velocities
and more stability at larger velocities. Whereas large
values of o causes more stability at low velocities. For
variation in vertical force FZ, it was observed that larger
values of FZ and V require larger value of (-k) for
stability. Larger values of (-k) will create instability for
other parameters and hence is undesirable.
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