INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 29, Number 02, 2016

ISSN: 2349-4689

An Improved Approach for Bug Report
Summarization Using Data Processing

Priya Karambe', Vidya Bharde®

1pG Scholar, 2Professor, Computer Engineering,
MGMCET, Kamothe, Navi Mumbai (India)

Abstract - Software developers access bug reports in a project’s
bug repository to help with a number of different tasks,
including understanding how previous changes have been
made and understanding multiple aspects of particular defects.
A developer’s interaction With existing bug reports often
requires perusing a substantial amount of text. In this will
investigate whether it is possible 10 summarize bug reports
automatically so that developers can perform their tasks by
consulting shorter summaries instead of entire bug reports. \We
investigated whether existing conversation-based automated
summarizers are applicable t0 bug reports and found that the
quality of generated summaries is similar to summaries
produced for e-mail threads and other conversations [1]. So we
have proposed Trained Summarizer for improved Summaries
(TSIS). We trained a summarizer on a bug report corpus. This
summarizer produces summaries that are statistically better
than summaries produced by existing conversation-based
generators. To determine if automatically produced bug report
summaries can help a developer with their work. We found that
summaries helped the participants to save time.

Keywords: Original Bug reports, TSIS, summarize bug reports,
Automated summarizers, Trained summarizer.

l. INTRODUCTION

While working software project, the developer may
consult the bug repository to understand reported defects
in more details, or to understand how changes were made
on the project in the past. A software project’s bug
repository provides a rich source of information.
Sometimes a developer can determine relevance based on
a quick read of the title of the bug report [1], other times a
developer must read the report, which can be lengthy,
involving discussions amongst multiple team members and
other stakeholders. So, summary requires that represents
information in the report to help other developers who later
access the report in future. Summarization is the creation
of a shortened version of atext. Bug report summaries
could help developers perform duplicate detection tasks [2]
in less time with no indication of accuracy degradation. As
far, existing conversation-based, e-mail threads applicable
to bug reports. But Trained [6] a summarizer on a bug
report corpus produces summaries better than existing [9]
conversation-based generators reduce the time a developer
spends getting to the right artefacts to perform their work
is to provide a summary of each artefact.

WWW.ijspr.com

Il. SYSTEM MODEL

Given the evolving nature of bug repositories and the
limited time available to developers, this optimal path is
unlikely to occur. As a result, we investigate the automatic
production of summaries to enable generation of up-to-
date summaries on-demand. Bug reports vary in length.
Some are short, consisting of only a few words. Others are
lengthy and conversations between many
developers and users. Bug reports are automatically
summarized so that developers can perform their tasks by
consulting shorter summaries instead of entire bug reports.
Fig. 2.1 shows Models for training and detection of TSIS
(Trained Summarizer for Improved summary). So,
summaries that produced can be statistically better than
summaries produced by existing conversation-based
generators become needed. We investigated trained
summarizer; using frequency analysis optimizes
performance by converting large reports into short integer
vectors for faster analysis as compared to string
comparisons. An automatically produced bug report
summary helps a developer with their work without
degrading accuracy [8].

include

Training Detection

(I I

BugFile SummaryFile Bug File

Fig. 2.1 System Model for improved Summarizer

Then an abstractive summary can be generated by
identifying patterns that abstract over multiple sentences.
Software developers must perform similar activities, such
as understanding what bugs have been filed against a
particular component of a system. However, developers
must perform these activities without the benefit of
summaries, leading them to either expend substantial effort

1JSPR | 59

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume 29, Number 02, 2016

to perform the activity thoroughly or resulting in missed
information. In this paper, we have investigated
summarizer that automatically generates summaries of bug
reports, t0 provide developers with the benefits others
experience daily in other domains. We also found that an
extractive summary generator trained on bug reports
produces the best results. Generated bug report summaries
could help developers perform tasks in less time with no
indication of accuracy degradation, confirming that bug
report summaries help software developers in performing
software tasks.

I1l. REVIEW OF WORK
Sarah Rastkar, Gail C. Murphy, Gabriel Murray,
“Automatic Summarization of Bug Reports”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL.40, NO. 4, APRIL 2014

Paper focuses on extractive techniques. Bug reports varies
depending upon the system being used to store the reports,
much of the information in a bug report resembles a
conversation. Beyond the fixed fields with pre-defined
values, such as the status field that records whether the bug
is open or closed or some other state, a bug report usually
involves free-form text, including a title or summary, a
description and a series of time-stamped that capture a
conversation between developers (and sometimes users)
related to the bug [1].

= Used a summarization technique developed for
generic conversations.

= bug reports summaries generated by this
technique help developers future efforts may
focus more

= on domain-specific features of bug reports to
improve generated summaries

R. K. Taware , “Complete Bug Report Summarization
using Task-Based Evaluation: A Survey”, International
Journal of Engineering Research and General Science
Volume 2, Issue 6, October-November, 2014

Paper discussed Summarizations methods like, Key word
extraction and abstraction, Document summarization, and
summarizing email threads. The summarization system
computes the frequency of the key words in the text, which
sentences they are existing in, and where these sentences
are in the text. Performance of extraction based
summarization is better than abstractive approach. But,
corpus for different language’s stop words is not available,
also more accuracy needed [2].

Paul W. Mc Burney and Collin McMillan, “Automatic

Documentation Generation via Source Code

WWW.ijspr.com

ISSN: 2349-4689

Summarization of Method Context,” ICPC 14, June 2-3,
2014

A documentation generator iS a programming tool that
creates documentation for software by analysing the
statements and comments in the software's source code.
While many of these tools are manual, in that they require
specially formatted metadata written by programmers, new
research has made inroads towards automatic generation of
documentation. These approaches work by stitching
together keywords from the source code into readable
natural language sentences [7]. They can describe the
behaviour of a Java method, but not why the method exists
or what role it plays in the software. This paper, propose a
technique that includes this context by analysing how the
Java methods are invoked. Documentation generator is a
programming tool that creates documentation for software
by analysing the statements and comments in the
software's source code. Many of these tools are manual, in
that they require specially formatted metadata written by
programmers [3].

R. Lotufo, Z.Malik, and K.Czarnecki, “Modelling the
‘Hurried’ Bug Report Reading Process t0 Summarize Bug
Reports,” Proc. |EEE 28"Int’l Conf. Software
Maintenance (ICSM’12), pp. 430-439, 2012

As with most extractive summarization approaches, paper
proposed techniques to rank sentences by relevance and
select the most relevant sentences to compose the
summary. For summarization approach, paper estimate the
relevance of a sentence based on the probability of a reader
focusing his attention on that sentence, if the reader were
only allowed to focus his attention on a limited number of
sentences while skimming through the bug report and still
wanted to maximize his knowledge about the bug [4].

Y. Surendranadha Reddy , Dr. A.P. Siva Kumar, “An
Efficient Approach for Web document summarization by
Sentence Ranking ,” International Journal of Advanced
Research in Computer Science and Software Engineering,
Volume 2, Issue 7, July 2012

This paper presents @ summarization system that produces
a summary for a given web document based on sentence
importance measures. Most of the existing approaches for
single document summarization provide the summary by
using only the information present in the given document.
And some approaches use the neighbour documents to get
better document summary for the given document. Paper
describes approach for single document summarization
which uses the two sentence importance measures:
Frequency of the terms in the sentence and similarity to the
other sentences. The sentences are ranked according to
their respective scores and the sentences with top ranks are

1JSPR | 60

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume 29, Number 02, 2016

selected for summary. The summary is evaluated by using
‘recall’ evaluation measure [5].

IV. PROPOSED METHODOLOGY

System proposed a technique to automatically generate a
natural language summary to understand the main goal. In
a separate work, we developed Summarizer for automatic
generation of natural language summaries. To the best of
our knowledge, the work presented in this paper, is the
attempt to generate meaningful summaries of bug reports
and to evaluate the usefulness of the generated summaries
in the context of a software task. As another example, as
part of the annotation process, we also gathered
information about the intent of sentences, such As whether
a sentence indicated a ‘problem,” ‘suggestion,” ‘fix,’
‘agreement,” or ‘disagreement’, this information can be
used to train classifiers to map sentences of a bug report to
appropriate labels. Fig. 4.1 describes methodology of
TSIS.

zFile
BugFile — Count Sentences

Inboth file

Identify Keywords

& Their Weight
Summary File —— il o

Store Selection
Ratio

Calculate Selection
Ratic: T— —

@ Training
Arrange According

To Weight : :

WindowSize

Number of
Stop Words

Index Position
Of Statement

BugFile ——p
EH High-Frequency

hY| Keywords

Identify Sentences =¥

Large Trained Database

Store Initial Select N Sentences

[€=1 As per Selection
Summary

Ratio

)

Also select sentences
Having weight similar to
last selected sentence

Detection

Fig. 4.1 TSIS System.

Overall process of TSIS consists of mainly two phases:
A. Training
B. Detection

A. Training:

In this section database will train to work with bug report
to summarize them. Here original bug report and sample
summary file as input will provided to summarizer. Then
number of sentences in original bug report (N1) as well as
that of summary file (N2) will be calculated. Selection
Ratio (R) of these two parameters calculated as following:

R=N2/N1

WWW.ijspr.com

ISSN: 2349-4689

Where,

R= Selection Ratio

N1= number of sentences in original bug report
N2= number of sentences in Summary File

Selection ratio will be calculate and stored for future
reference in Detection process. Fig. 4.2 gathers indexing
information of sentences as per their weight as a part of
training.

05
So - 5
S 0.5
l I| . i /l‘
033 / | 05 ¢
05 {
0.33 05
Ly -
s3 033 | s L0 T s

Fig. 4.2 Indexing sentences as per their weight
B. Detection:

Here bug file which user needs to summarize will provide
as input. Number of sentences of that file (N) will be
calculated and stored in database. Sentences with its index
value will be store in database. Weight of each sentence as
per keywords will be calculated. Sentences will be
arranged in descending order of their weight and then
count for sentences to be select (X) will be calculated as
per following:

X=R*N
Where,
X=number of sentences to be select
R=selection ratio (calculated from training process)
N=number of sentences 0f file need to be summarize

Top X sentences based on weight of keywords similar to
trained keywords will be selected. Using index values
stored in database these sentences will be arranged and
will be stored in database as generated summary.

V. EXPERIMENTAL RESULTS

We investigated whether existing conversation-based
automated summarizers are applicable to bug reports and

1JSPR | 61

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume 29, Number 02, 2016

found that the generated summaries are similar to
produced for e-mail threads and other
conversations. TSIS (Trained Summarizer for Improved
Summaries) using frequency analysis optimizes
performance by converting large reports into short integer
vectors for faster analysis as compared to string
comparisons using regular expressions. Fig. 5 shows
Comparison bases on accuracy for originals and
summaries.

summaries

Originals ——
Summaries

Aocuracy

0.2

Fig.5.1 Comparison of aspects based on accuracy.

This summarizer produces improved summaries that are
statistically better than summaries produced by existing
conversation-based generators. An automatically produced
bug report summary helps a developer with their work
within proved accuracy.

Criginals —
Summanes

Tirme to carmpletian (minutes)
o

Fig. 5.2 Comparison of aspects based on Time complexity.

We found that summaries helped participants save time.
Fig 5.2 shows time Complexity for originals and
Summaries.

VI. CONCLUSION

Software bug reports are important project artefacts that
evolve throughout the life of a software project. A
developer’s interaction with existing bug reports often
requires perusing a substantial amount of text. Summarize
bug reports automatically so that developers can perform
their tasks by consulting shorter summaries instead of
entire bug reports. This summarizer produces summaries
that are statistically better than summaries produced by

WWW.ijspr.com

ISSN: 2349-4689

existing conversation-based generators .Summaries helped
the study participants save time, that there was no evidence
that accuracy degraded. Summaries were helpful in the
context of duplicate detection tasks. In this section, discuss
possible ways to improve the summaries produced and to
their Summarization technique
developed for generic conversations to automatically
summarize bug reports. Bug reports summaries generated
by this technique help developers by improving accuracy
of Summaries and reducing the time complexity of the

evaluate usefulness.

process.
VIIl. FUTURE SCOPES

Here the system using frequency analysis optimizes
performance by converting large reports into short integer
vectors SO in future analysis become faster as compared to
string comparisons using regular expressions. As it uses
Weight based analysis in terms of location of keywords
improves accuracy of detection leading to low false-rate as

compared to uniform text summarization.

[1]

(2]

(3]

[4]

(5]

(6]

[7]

REFERENCES

Sarah Rastkar, Gail C. Murphy, Gabriel Murray, “Automatic
Summarization of Bug Reports”, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL.40, NO. 4, APRIL 2014.

R. K.Taware , “Complete Bug Report Summarization using Task-
Based Evaluation: A Survey ”, International Journal of
Engineering Research and General Science Volume 2, Issue 6,

October-November, 2014 .

Paul W. Mc Burney and Collin McMillan, “Automatic
Documentation Generation via Source Code Summarization of
Method Context,” ICPC ’14, June 2-3, 2014.

R. Lotufo, Z.Malik, and K.Czarnecki, “Modelling the ‘Hurried’
Bug Report Reading Process to Summarize Bug Reports,” Proc.
IEEE 28thInt’l Conf. Software Maintenance (ICSM’12), pp. 430-
439, 2012.

Y. Surendranadha Reddy , Dr. A.P. Siva Kumar, “An Efficient
Approach for Web document summarization by Sentence
Ranking ,” International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 2, Issue 7,
July 2012.

Jyoti Gautaml, Ela Kumar, “An Integrated and Improved
Approach to Terms Weighting in Text Classification ,” 1JCSI
International Journal of Computer Science Issues, Vol. 10, Issue
1, No 1, January 2013.

L. Moreno, J. Aponte, G. Sridhara, A Marcus, L. Pollock, and K.
Vijay-Shanker, “Automatic Generation of Natural Language
Summaries for Java Classes,” Proc. IEEE 21st Int’l Conf.
Program Comprehension (ICPC "13), 2013.

IJSPR | 62

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR) ISSN: 2349-4689
Volume 29, Number 02, 2016

[8] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, Siau-Cheng
Khoo, “A Discriminative Model Approach for Accurate Duplicate
Bug Report Retrieval, ICSE’10, May 2-8, 2010.

[91 Shamima Yeasmin Chanchal K. Roy Kevin A. Schneider,
“Interactive Visualization of Bug Reports using Topic Evolution
and Extractive Summaries.

[10] Rafael Lotufo, Zeeshan Malik, Krzysztof Czarnecki, “Modelling

The ‘Hurried” Bug Report Reading Process To Summarize Bug
Reports”, 978-1-4673-2312-3/12/$31.00 ¢ 2012 IEEE.

WWW.ijspr.com 1JSPR | 63

