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1. INTRODUCTION 

Higher order boundary value problems arise in the study of radiation transport in spherical and higher geometry with or 
without velocity field in astrophysics, stellar evolution, star formation and galaxy evolution. Initial – boundary value 
problems arise in modelling various areas and phenomena in fluid dynamics. The areas include predicting atmospheric 
processes and ocean circulation. The phenomena include convection, flow in wind tunnels, lee waves, and eddy. Free 
boundary problems do occur in fluid mechanics such as air flow around a wing of an aircraft, underground fluid flow 
through layers of soil and modelling of an ocean surface [1]. 

Higher order boundary value problems occur in the study of fluid dynamics, astrophysics, hydrodynamics, hydro magnetic 
stability, astronomy, beam and long wave theory, induction motors, engineering, and applied physics. The boundary value 
problems of higher order have been examined due to their mathematical importance and applications in diversified fields 
of applied sciences. 

The behaviour of induction motors is modelled using fifth – order boundary value problems. This model contains five 
variables in all. Of them two each are related to stator and rotor states and the other one to shat speed. In fact, two more 
variables will be required to account for the effects of a second rotor circuit representing deep bars, a starting cage, or rotor 
distributed parameters. But, to avoid the computational burden of additional state variables when additional rotor circuits 
are required the model is often limited to the fifth – order and rotor impedance is algebraically altered as function of rotor 
speed under the assumption that the frequency of rotor currents depends on rotor speed [2].  

The approach is efficient for the steady state response with sinusoidal voltage. But it does not hold well when the transient 
conditions are included i.e., rotor frequency is not a single value. So, the behaviours of such models are described using the 
seventh order boundary value problems [3].  

Further, it is investigated that when an infinite horizontal layer of fluid is heated from below and is subject to rotation then 
the instability takes place [4]. If the instability sets in as over stability then the phenomenon is represented by an eighth – 
order boundary value problems.  

If an infinite horizontal layer of fluid is heated from below with the assumption that a uniform magnetic field is applied 
across the fluid in the same direction as gravity and the fluid is subject to the action of rotation then the instability occurs. 
When this instability sets in as ordinary convection then it is modelled by tenth – order boundary value problems. 

The method variation of parameters is used for solving the seventh – order problems [5].  Eighth – order problems are 
solved using various techniques including: general differential quadrature rule, Nonic spline and non polynomial spline 
technique, Octic spline, Adomian decomposition method, Homotopy perturbation method and Kernel space method [6-7]. 
Tenth – order boundary value problems are solved following few procedures including: reproducing Kernel method, 
variational iteration technique, numerical solutions and tenth degree spline [8-9].  

A spline collocation method is developed using spline interpellants and analyzed the approximating solutions of some 
general linear boundary value problems [10]. The HAM and HPM are compared in solving non linear heat transfer 
equation [11]. HAM is employed to compute approximate solution of the system of differential equations governed by the 
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problem and also is used to detect the in excellence of convective straight lines with temperature dependent thermal 
conductivity [12].  

HAM is successfully applied to solve MHD Jefery – Hamel flows in nonparallel walls. Non polynomial spline is used in of 
– step points to solve special tenth order linear boundary value problems. Laplace decomposition method (LDM) is applied 
to nonlinear Blasius low equation to obtain series solutions. A new method has been constructed for finding the solution of 
Abel’s type singular integral equations. However, Bikely’s method makes the calculation much simpler [13].  

The newly proposed method efficiently finds exact solution and can be used to solve nonlinear Volterra integral equations 
[14]. Coupling of Homotopy perturbation and Laplace transformation is proposed and is used for solving system of partial 
differential equations [15]. The stagnation point low of a viscous fluid towards a stretching sheet has been described and 
using which obtained an analytical solution of the boundary layer equation by HAM [16]. A modification of the HAM is 
available for solving nonlinear boundary value problems [17]. The accuracy of the HAM for solving the fractional order 
problem of the spread of a disease in a population has been investigated [18]. The application of HAM to general nonlinear 
Klein – Gordon type equations has been discussed [19]. 

Prior to 1950, the computations involved in numerical method to obtain numerical solution of a differential equation were 
done manually. Later these computations are carried through the calculators followed by digital computers.  Due to rapid 
advances in computing machines like high speed and accuracy, several researchers have been working for developing the 
numerical methods to obtain the numerical solution of the ordinary or partial differential equations with specified 
conditions.  

Initially, the cubic spline technique has been introduced for solving second order two point boundary value problems. A 
solution has been obtained for a set of linear equations whose coefficients form an upper Hessen berg matrix. The 
applications of cubic spline have been proved positive in the literature [20].  

In this paper we have constructed eleventh degree spline function and applied to solve the linear eighth order differential 
equation. The numerical solutions are constructed for different step lengths. The results of the present method are 
compared with those of the other methods and important observations are drawn.  

2. CONSTRUCTION OF ELEVENTH DEGREE SPLINE 

Let the interval  [𝑥𝑥0, 𝑥𝑥𝑛𝑛 ]  be divided into  𝑛𝑛  subintervals with grid points at the locations    𝑥𝑥0, 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 . Starting at  𝑥𝑥0  
the function   𝑦𝑦(𝑥𝑥)  in the interval  [𝑥𝑥0, 𝑥𝑥1] is represented by eleventh degree spline as 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏(𝑥𝑥 − 𝑥𝑥0) + 𝑐𝑐 (𝑥𝑥 − 𝑥𝑥0)2 +  𝑑𝑑(𝑥𝑥 − 𝑥𝑥0)3 + 𝑒𝑒(𝑥𝑥 − 𝑥𝑥0)4 + 𝑔𝑔(𝑥𝑥 − 𝑥𝑥0)5 + ℎ(𝑥𝑥 − 𝑥𝑥0)6 + 𝑖𝑖(𝑥𝑥 − 𝑥𝑥0)7 +
𝑗𝑗(𝑥𝑥 − 𝑥𝑥0)8 + 𝑘𝑘(𝑥𝑥 − 𝑥𝑥0)9 + 𝑙𝑙(𝑥𝑥 − 𝑥𝑥0)10 + 𝑡𝑡(𝑥𝑥 − 𝑥𝑥0)11   (1) 

Proceeding to the next interval  [𝑥𝑥1, 𝑥𝑥2] we add a term    𝑡𝑡1( 𝑥𝑥 −  𝑥𝑥1)11 , proceeding in to the next interval  [ 𝑥𝑥2,   𝑥𝑥3]     we 
add another term    𝑡𝑡2(𝑥𝑥 −  𝑥𝑥1)11  , and so on until we reach   𝑥𝑥𝑛𝑛  .  Thus the function  𝑦𝑦(𝑥𝑥) is represented in the form 

        𝑓𝑓(𝑥𝑥) =  a +  b(𝑥𝑥 −  𝑥𝑥0)  +  c(𝑥𝑥 −  𝑥𝑥0)2  +  d(𝑥𝑥 −  𝑥𝑥0)3  +  e(𝑥𝑥 −  𝑥𝑥0)4  +  g(𝑥𝑥 −  𝑥𝑥0)5  +  h(𝑥𝑥 −  𝑥𝑥0)6  +

 𝑖𝑖(𝑥𝑥 −  𝑥𝑥0)7  +  j(𝑥𝑥 −  𝑥𝑥0)8  +  𝑘𝑘(𝑥𝑥 −  𝑥𝑥0)9  +  𝑙𝑙(𝑥𝑥 −  𝑥𝑥0)10  +  ∑ 𝑡𝑡𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 �𝑥𝑥𝑛𝑛  –  𝑥𝑥0�

11
        (2)                                                 

 It can be shown that 𝑓𝑓(𝑥𝑥) and its first eighth derivatives are continuous across nodes. 

2.1 METHOD OF OBTAINING THE SOLUTION OF EIGHTH ORDER BOUNDARY VALUE PROBLEMS 
USING ELEVENTH DEGREE SPLINE FUNCTION 

Consider the linear seventh order differential equation together with boundary conditions 

      𝑦𝑦(8)(𝑥𝑥)  +  𝑓𝑓(𝑥𝑥)𝑦𝑦(𝑥𝑥)  =  𝑝𝑝(𝑥𝑥)  

y(𝑥𝑥0)  =  α , 𝑦𝑦(𝑥𝑥n) = β,   𝑦𝑦’(𝑥𝑥0) =  α’,         𝑦𝑦’(𝑥𝑥n) =  β’, 𝑦𝑦’’(𝑥𝑥0) = α”, 𝑦𝑦”(𝑥𝑥n) = β”, 𝑦𝑦(3)(𝑥𝑥0) = α”’, 𝑦𝑦(3)(𝑥𝑥𝑛𝑛) =  𝛽𝛽′′′      
(3)                                  

From (3), and taking spline approximation in (10) at  𝑥𝑥 = 𝑥𝑥𝑖𝑖   for 𝑖𝑖 =  0, 1,2,3,4, . . . ,𝑛𝑛 we get  (𝑛𝑛 + 11)  equations 
in (𝑛𝑛 + 13) unknowns  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑔𝑔, ℎ, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, t0, t1, t2, t3, … , tn−1 . To have the solution for the unknowns one more 
equation is required. So we assume that  𝑡𝑡𝑛𝑛−1 = tn−2 = tn−3 after determining these unknowns we substitute them in (2) 
and thus we get eleventh degree spline approximation of   𝑦𝑦(𝑥𝑥). Putting    𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2,  𝑥𝑥3, … , 𝑥𝑥n   in the spline function 
thus determined we get the solution at the grid points. The system of equations to be satisfied by the coefficients 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑔𝑔, ℎ, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, t0, t1, t2, t3, … , tn−1   is derived below: From equation (2) we get  

𝑓𝑓(8)(𝑥𝑥) = 40320 𝑗𝑗 + 362880 𝑘𝑘 (𝑥𝑥 − 𝑥𝑥0) + 1814400 𝑙𝑙 (𝑥𝑥 − 𝑥𝑥0)2 + 6652800∑ 𝑡𝑡𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑖𝑖)3𝑛𝑛−1
𝑖𝑖=0       (4) 

www.ijspr.com                                                                                                                                                                                IJSPR | 116 



INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH  (IJSPR)                                           ISSN: 2349-4689 
Issue 88, Volume 31, Number 02, 2017 
 
Since 𝑓𝑓(𝑥𝑥) approximates  𝑦𝑦(𝑥𝑥), from (1) and from the boundary conditions (3) we obtain 

                           𝑎𝑎 =  𝛼𝛼 ,                                                                                                                                               (5) 

  𝑎𝑎 +  𝑏𝑏(𝑥𝑥 −  𝑥𝑥0)  +  𝑐𝑐(𝑥𝑥 −  𝑥𝑥0)2  +  𝑑𝑑(𝑥𝑥 −  𝑥𝑥0)3  +  𝑒𝑒 (𝑥𝑥 −  𝑥𝑥0)4  +  𝑔𝑔(𝑥𝑥 −  𝑥𝑥0)5  +  ℎ(𝑥𝑥 −  𝑥𝑥0)6  +  𝑖𝑖(𝑥𝑥 −  𝑥𝑥0)7  +

 𝑗𝑗(𝑥𝑥 −  𝑥𝑥0)8  +  𝑘𝑘(𝑥𝑥 −  𝑥𝑥0)9  +   𝑙𝑙(𝑥𝑥 −  𝑥𝑥0)10  + ∑ 𝑡𝑡𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 �𝑥𝑥𝑛𝑛– 𝑥𝑥0�

11
= 𝛽𝛽       (6)                                                                                                                       

                                   𝑏𝑏 =  𝛼𝛼’,                                                                                                                                        (7) 

    𝑏𝑏 +  2𝑐𝑐�𝑥𝑥 –  𝑥𝑥0�  +  3𝑑𝑑�𝑥𝑥 – 𝑥𝑥0�
2

 +  4𝑒𝑒�𝑥𝑥 –  𝑥𝑥0�
3

 +  5𝑔𝑔�𝑥𝑥 – 𝑥𝑥0�
4

 +  6ℎ�𝑥𝑥 –  𝑥𝑥0�
5

 +  7𝑖𝑖�𝑥𝑥 – 𝑥𝑥0�
6

 +  8𝑗𝑗�𝑥𝑥– 𝑥𝑥0�
7

+

9 𝑘𝑘(𝑥𝑥 − 𝑥𝑥0)8 + 10𝑙𝑙 (𝑥𝑥 − 𝑥𝑥0)9 + 11∑ 𝑡𝑡𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 �𝑥𝑥– 𝑥𝑥𝑖𝑖�

10
= 𝛽𝛽′ (8)                                                                                                                                          

                                       2𝑐𝑐 =  𝛼𝛼′′                                                                                                                                 (9) 

2𝑐𝑐 +  6𝑑𝑑�𝑥𝑥 – 𝑥𝑥0�  +  12𝑒𝑒�𝑥𝑥 –  𝑥𝑥0�
2

 +  20𝑔𝑔�𝑥𝑥 – 𝑥𝑥0�
3

 +  30ℎ�𝑥𝑥 – 𝑥𝑥0�
4

+  42𝑖𝑖�𝑥𝑥 – 𝑥𝑥0�
5

+  56𝑗𝑗�𝑥𝑥– 𝑥𝑥0�
6

+ 72 𝑘𝑘(𝑥𝑥 −
𝑥𝑥07+90𝑙𝑙 𝑥𝑥−𝑥𝑥08+110𝑖𝑖=0𝑛𝑛−1𝑡𝑡𝑖𝑖𝑥𝑥–𝑥𝑥𝑖𝑖9 = 𝛽𝛽′′             (10) 

                                                   6𝑑𝑑 =  𝛼𝛼′′′                                                                                                                 (11) 

6𝑑𝑑 +  24𝑒𝑒�𝑥𝑥 –  𝑥𝑥0�  +  60𝑔𝑔�𝑥𝑥 – 𝑥𝑥0�
2

 +  120ℎ�𝑥𝑥 – 𝑥𝑥0�
3

 +  210𝑖𝑖�𝑥𝑥 –  𝑥𝑥0�
4

 +  336𝑗𝑗�𝑥𝑥– 𝑥𝑥0�
5

+  504 𝑘𝑘(𝑥𝑥 − 𝑥𝑥0)6 +

720𝑙𝑙 (𝑥𝑥 − 𝑥𝑥0)7 + 990∑ 𝑡𝑡𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 �𝑥𝑥– 𝑥𝑥𝑖𝑖�

8
 =  𝛽𝛽′′′       (12) 

From (5) − (12) we have (𝑛𝑛 + 11) equations, if these equations are taken in the order (7), (9), and (11) with 𝑚𝑚 =  𝑛𝑛,𝑛𝑛 −
1, . . . ,0 , (12), (10), (8) and (6) the coefficient matrix of the unknowns, 𝑡𝑡𝑛𝑛 , 𝑡𝑡𝑛𝑛−1, . . . 𝑡𝑡1, 𝑡𝑡0, 𝑙𝑙, 𝑘𝑘, 𝑗𝑗, 𝑖𝑖, ℎ, 𝑔𝑔, 𝑒𝑒, 𝑑𝑑, 𝑐𝑐, 𝑏𝑏, 𝑎𝑎  
will be an upper triangular matrix with two lower sub diagonals. The forward elimination is then simple with only two 
multipliers at each step, and back substitution is correspondingly made easy using MATLAB software. 

3. NUMERICAL RESULT 

In this section we consider one linear non homogeneous boundary value problem. Its numerical solution and absolute 
errors are given at different step lengths. The approximate solution, exact solutions and absolute errors at the grid points 
are summarized in tabular form. Further the approximate solution and exact solution have been shown graphically. The 
comparison of maximum absolute errors at different step lengths has been presented in tabular form. 

Problem 

Consider the following homogeneous linear eighth order boundary value problem 

𝑢𝑢(8) (𝑥𝑥) =  −𝑥𝑥 𝑢𝑢 (𝑥𝑥) − 𝑒𝑒𝑥𝑥  (48 + 15𝑥𝑥 + 2𝑥𝑥3 ), 0 ≤ 𝑥𝑥 ≤ 1                                                         (13) 

With boundary conditions 

𝑢𝑢(0) =  0,   𝑢𝑢′(0) = 1, 𝑢𝑢(2)(0) =  0,  𝑢𝑢(3)(0) =  −3, 𝑢𝑢(1) =  0,   𝑢𝑢’(1) =  −𝑒𝑒,   𝑢𝑢(2)(1) = −4𝑒𝑒, 𝑢𝑢(3)(1) =  −9𝑒𝑒        
(14)                                                                                                                        

The exact solution is    𝑢𝑢(𝑥𝑥) = 𝑥𝑥(1 − 𝑥𝑥)𝑒𝑒𝑥𝑥  .   

We find the solution of (13) – (14) by taking step lengths ℎ =  0.2  and ℎ =  0.1  at equal subintervals. 

Solution with 𝒉𝒉 =  𝟎𝟎.𝟐𝟐 

The eleventh degree spline 𝑓𝑓(𝑥𝑥) which approximates 𝑢𝑢(𝑥𝑥) is given by 

 𝑓𝑓(𝑥𝑥) =  a +  b(𝑥𝑥 −  𝑥𝑥0)  +  c(𝑥𝑥 −  𝑥𝑥0)2 +  d(𝑥𝑥 −  𝑥𝑥0)3  +  e(𝑥𝑥 −  𝑥𝑥0)4  +  g(𝑥𝑥 −  𝑥𝑥0)5  +  h(𝑥𝑥 −  𝑥𝑥0)6  +  𝑖𝑖(𝑥𝑥 −  𝑥𝑥0)7  +

 j(𝑥𝑥 −  𝑥𝑥0)8  +  𝑘𝑘(𝑥𝑥 −  𝑥𝑥0)9  +  𝑙𝑙(𝑥𝑥 −  𝑥𝑥0)10  +   ∑ 𝑡𝑡𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 �𝑥𝑥𝑛𝑛  – 𝑥𝑥0�

11
  (15)                                                     

Here in (15),  𝑥𝑥0 =  0, 𝑥𝑥1 =  0.2, 𝑥𝑥2 =  0.4, 𝑥𝑥3 =  0.6,   𝑥𝑥4 =  0.8,   𝑥𝑥5  = 1 and we have 17 unknowns viz.,  𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑,
𝑒𝑒, 𝑔𝑔, ℎ, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙,  𝑡𝑡0, 𝑡𝑡1,   𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4   and the conditions to be satisfied by these unknowns are 

𝑓𝑓(𝑥𝑥0) =  0, 𝑓𝑓(𝑥𝑥5) =  0,     𝑓𝑓’(𝑥𝑥0) =  1, 𝑓𝑓’(𝑥𝑥5) =  −𝑒𝑒,    𝑓𝑓(2)(𝑥𝑥0) =  0,    𝑓𝑓(2)(𝑥𝑥5) =  −4𝑒𝑒, 𝑓𝑓(3)(𝑥𝑥0) =  −3 ,  𝑓𝑓(3)(𝑥𝑥5) =
 −9𝑒𝑒 (16)                                                                                                                  

𝑓𝑓(8)(𝑥𝑥𝑖𝑖) =  −𝑥𝑥𝑓𝑓(𝑥𝑥𝑖𝑖) −  𝑒𝑒𝑥𝑥𝑖𝑖�48 +  15𝑥𝑥𝑖𝑖 + 2𝑥𝑥𝑖𝑖3�, for   𝑖𝑖 = 0, 1, 2, 3, 4.                                               (17) 
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Since 𝑓𝑓(𝑥𝑥0) =  0, 𝑓𝑓′(𝑥𝑥0) =  1, 𝑓𝑓′′ (𝑥𝑥0) =  0, 𝑓𝑓(3)(𝑥𝑥0) = −3, it follows that  𝑎𝑎 =  0, 𝑏𝑏 =  1,     𝑐𝑐 =  0 and 𝑑𝑑 = −0.5  
hence the spline  𝑆𝑆(𝑥𝑥) reduces to the form  

𝑓𝑓(𝑥𝑥) =  �𝑥𝑥 – 𝑥𝑥0�  −  0.5�𝑥𝑥 –  𝑥𝑥0�
3

 +  𝑒𝑒�𝑥𝑥 –  𝑥𝑥0�
4

 +  𝑔𝑔�𝑥𝑥 –  𝑥𝑥0�
5

 +  ℎ�𝑥𝑥 –  𝑥𝑥0�
6 

+  𝑖𝑖�𝑥𝑥 – 𝑥𝑥0�
7

 + 𝑗𝑗�𝑥𝑥 – 𝑥𝑥0�
8

+

𝑘𝑘�𝑥𝑥 –  𝑥𝑥0�
9

+ 𝑙𝑙�𝑥𝑥 – 𝑥𝑥0�
10 

+   ∑ 𝑡𝑡𝑖𝑖  �𝑥𝑥𝑛𝑛  –  𝑥𝑥0�
11

 4
𝑖𝑖=0  (18) 

Solving (17) we have the following values for the unknown coefficients  

𝑒𝑒 =  −0.3297                             𝑘𝑘 =  0.001440                                          𝑡𝑡3 = 0.000398 

𝑔𝑔 =   −0.134280                       𝑙𝑙 =   −0.002809                                      𝑡𝑡4 = 0.000398 

ℎ =   −0.025108                      𝑡𝑡0 = 0.001597  

𝑖𝑖 =   −0.009710                        𝑡𝑡1 = −0.002002 

𝑗𝑗 =  −0.001190                         𝑡𝑡2 = 0.000398 

Substituting these values in equation (15) we get the spline approximation 𝑓𝑓(𝑥𝑥)  of 𝑢𝑢(𝑥𝑥). 

The values of   𝑓𝑓(𝑥𝑥), 𝑢𝑢(𝑥𝑥) and the corresponding absolute errors at   𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 have been given in the Table 1 and the 
comparison has been shown in Figure 1.                                                                                                                                                               

TABLE 1: Numerical solution  𝑓𝑓(𝑥𝑥), exact solution 𝑢𝑢(𝑥𝑥)  and absolute error of the problem with ℎ = 0.2 

𝑥𝑥 𝑓𝑓(𝑥𝑥) 𝑢𝑢(𝑥𝑥) Absolute error 

0.2  0.195424 0.195424 3.7440E – 09 

0.4 0.358037 0.358037 3.3611E-09 

0.6 0.437308 0.437308 7.5699E-08 

0.8 0.356086 0.356086 6.0345E-08 

 

 

Figure 1 Comparison of exact and approximate solutions of the problem with 𝒉𝒉 = 𝟎𝟎.𝟐𝟐   Solution with 𝒉𝒉 = 𝟎𝟎.𝟏𝟏 

Since  ℎ = 0.1  we suppose the grid points 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10    where, 𝑥𝑥0 = 0, 𝑥𝑥1 = 0.1, 𝑥𝑥2 =
0.2, 𝑥𝑥3 = 0.3, 𝑥𝑥4 = 0.4, 𝑥𝑥5 = 0.5, 𝑥𝑥6 = 0.6, 𝑥𝑥7 = 0.7, 𝑥𝑥8 = 0.8, 𝑥𝑥9 = 0.9, 𝑥𝑥10 = 1.0 From equation (1) eleventh 
degree spline  𝑓𝑓(𝑥𝑥) which approximates  𝑢𝑢(𝑥𝑥)  becomes 
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𝑓𝑓(𝑥𝑥) =  �𝑥𝑥 – 𝑥𝑥0�  −  0.5�𝑥𝑥 –  𝑥𝑥0�
3

 +  𝑒𝑒�𝑥𝑥 –  𝑥𝑥0�
4

 +  𝑔𝑔�𝑥𝑥 –  𝑥𝑥0�
5

 +  ℎ�𝑥𝑥 –  𝑥𝑥0�
6 

+  𝑖𝑖�𝑥𝑥 – 𝑥𝑥0�
7

 + 𝑗𝑗�𝑥𝑥 – 𝑥𝑥0�
8

+

𝑘𝑘�𝑥𝑥 –  𝑥𝑥0�
9

+ 𝑙𝑙�𝑥𝑥 – 𝑥𝑥0�
10 

+   ∑ 𝑡𝑡𝑖𝑖9
𝑖𝑖=0   �𝑥𝑥𝑛𝑛  –  𝑥𝑥0�

11
 (19)                                                                                                                                                 

From equation (18)   and the boundary conditions we get the following values: 𝑒𝑒  =  −0.2215407, 𝑔𝑔 =
 −0.0144194, ℎ =  0.00160134, 𝑖𝑖 =   −0.009710, 𝑗𝑗 = −0.001190, 𝑘𝑘 =  −0.0002199, 𝑙𝑙 =  −0.0023378, 𝑡𝑡0 =
 0.0042809, 𝑡𝑡1   =  −0.00433413, 𝑡𝑡2 =  0.004274, 𝑡𝑡3  =  −0.004341, 𝑡𝑡4 =  0.0042651, 𝑡𝑡5 =  −0.0043519, 𝑡𝑡6 =
 0.0034716, 𝑡𝑡7 =  0.0034716, 𝑡𝑡8 =  0.0034716, 𝑡𝑡9 =  0.0034716                                                                    

Substituting these values in equation (18) we get the spline approximation  𝑓𝑓(𝑥𝑥)  of   𝑢𝑢(𝑥𝑥).   The values of 𝑓𝑓(𝑥𝑥), 𝑢𝑢(𝑥𝑥) and 
the corresponding absolute errors at 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8,  𝑥𝑥9, 𝑥𝑥10  have been given in the Table 2 and the 
comparison has been shown in Fig 2. 

TABLE 2 NUMERICAL SOLUTIONS 𝒇𝒇(𝒙𝒙), EXACT SOLUTION 𝒖𝒖(𝒙𝒙) AND ABSOLUTE ERROR OF THE 
PROBLEM WITH 𝒉𝒉 = 𝟎𝟎.𝟏𝟏 

𝒙𝒙 𝒇𝒇(𝒙𝒙) 𝒖𝒖(𝒙𝒙) Absolute error 

0.1 0.099465 0.099465 3.9968E-15 

0.2 0.195424 0.195424 3.6801E-15 

0.3 0.283470 0.283470 1.3001E-15 

0.4 0.358037 0.358037 7.3580E-14 

0.5 0.412180 0.412180 1.0000E-14 

0.6 0.437308 0.437308 5.7009E-14 

0.7 0.428881 0.428880 1.0003E-13 

0.8 0.356086 0.356086 2.0000E-13 

0.9 0.221364 0.221364 2.0400E-13 

 
Figure 2. Comparison of approximate and exact solution of the problem with  𝒉𝒉 = 𝟎𝟎.𝟏𝟏 

4. COMPARATIVE STUDY OF PRESENT METHOD WITH OTHER METHODS 
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The numerical result obtained by present method is compared with the numerical result obtained by other methods. 

TABLE 3: COMPARISON OF THE ABSOLUTE ERRORS OBTAINED USING DIFFERENT METHODS FOR 
THE PROBLEM AT 𝒉𝒉 =  𝟎𝟎.𝟏𝟏 

𝑥𝑥 Exact 

Solution 

Approximate 

Solution 

                                  Absolute error of          

Present 
Method 

HAM 
Method [20] 

Akram and 

Rehman [6]  

Siddiqi & 

Akram [4] 

Inc and  

Evans [5] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.099465 

0.195424 

0.283470 

0.358037 

0.412180 

0.437308 

0.428880 

0.221364 

0.099465 

0.195424 

0.283470 

0.358037 

0.412180 

0.437308 

0.428880 

0.221364 

3.9968E-15 

3.6801E-15 

1.3001E-15 

7.3580E-14 

1.0000E-14 

5.7009E-14 

1.0003E-13 

2.0000E-13 

3.89966E-15 

9.45355E-14 

7.04437E-14 

4.36873E-13 

1.28897E-13 

4.01956E-13 

2.06929E-12 

2.65915E-12 

1.63E-10 

1.63E-09 

4.90E-09 

8.46E-09 

1.01E-08 

8.68E-09 

5.15E-09 

1.76E-09 

5.62E-10 

4.88E-09 

1.37E-08 

2.29E-08 

2.71E-08 

2.38E-08 

1.49E-08 

5.54E-09 

3.73E-09 

6.62E-09 

2.33E-08 

5.17E-08 

9.76E-08 

1.76E-06 

4.12E-06 

1.83E-04 

 

From the table 3 above the present method is more accurate than the other methods which is shown graphically as follows: 

 

Figure 3: Comparison of absolute errors obtained using different methods  for the problem 1 with 𝒉𝒉 =  𝟎𝟎.𝟏𝟏 

5. CONCLUSIONS 

In this paper we developed the numerical methods to obtain the solution of eighth order boundary value problems using 
eleventh degree spline. Eleventh degree spline approximation has been employed on one problem at different step lengths. 
Numerical solution of the problem has been found with  ℎ =  0.2  and ℎ =  0.1. Approximate solution, exact solution and 
absolute errors with  ℎ =  0.2  and  ℎ =  0.1 of the problem are summarized in the Table 1 and Table 2 respectively. The 
comparison has been shown in Figure 1 and 2 respectively. 

The minimum absolute errors or the maximum accuracy at these step length are  3.7440 × 10−9, and  3.9968 × 10−15  
respectively. From this we understand that there is good agreement with the exact solution. It is also observed that the 
approximate solution is more close to the exact solution when h is small. 

   In this section, the spline approximation method has been applied to obtain the numerical solutions of eighth order 
boundary value problems using eleventh degree spline function.  All computational work was carried out using MATLAB 
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software. The numerical results show that only a few numbers of approximations can be used for numerical purpose with 
high degree of accuracy. It is observed that the absolute errors are better than the methods in [7, 9, 11, and 20]. It is also 
observed that our proposed method is well suited for the solution of higher order boundary value problems and reduces the 
computational work. Spline approximation method converges to exact solutions more rapidly as compared to the other 
method. Therefore, the present method is an accurate and reliable analytical technique for boundary value problems. 
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