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Tangles and Connectivity In Graphs
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Abstract - This project is a short introduction to the theory of
tangles, both in graphs and general connectivity systems. An
emphasis is put on the correspondence between tangles of order
k and k-connected components. In particular, we prove that
there is a one-to-one correspondence between the triconnected
components of a graph and its tangles of order 3.

l. INTRODUCTION

Tangles, introduced by Robertson and Seymour in their
graph monors series, have come to play an important role
in structural graph theory.

Tangles describe highly connected regions in a graph. In a
precise mathematical sense, they are “dual” to
decompositions. Intuitively, a graph has a highly
connected region described by a tangle if and only if it
does not admit a decomposition along separators of low
order.By decomposition | always mean a decomposition in
a treelike fashion; formally, this is captured by the notions
of tree decomposition or branch decomposition. However,
tangles describe regions of a graph in an indirect and
elusive way. This is why we use the unusual term “region”
instead of “subgraph” or “component”. The idea is that a
tangle describes a region by pointing to it. A bit more
formally, a tangle of order k assigns a “big side” to every
separation of order less than k. The big side is where the
(imaginary) region described by the tangle is of “big
sides” to the separations iS subject t0 certain consistency
and nontriviality conditions, the “tangle axioms”.

To understand why this way of describing a “region” is a
good idea, let us review decompositions of graphs into
their k-connected components. It is well known that every
graph can be decomposed into its connected components
and into its biconnected components. The former are the
(inclusionwise) maximal connected subgraphs, and the
latter the maximal 2-connected subgraphs. It is also well-
known that a graph can be decomposed into its
triconnectedcomponents, but the situation
complicated here. Different from the triconnected
components are not maximal 3-connected subgraphs; in
fact they are not even subgraphs, but just topological
subgraphs.

iS more

In general a graph does not have a reasonable
decomposition into 4-connected components(neither into
k-connected components for any k>5), at least if these
components are supposed to be 4-connected and some kind
of subgraph. Consider the hexagonal grid.
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Fig:1

It is 3-connected, but not 4-connected. In fact, for any two
nonadjacent vertices there iS a separator of order 3
separating these two vertices. Thus it may be possible for
4-connected components of a grid. But may be we need to
adjust our view on connectivity: a hexagonal grid is fairly
highly connected in a “global sense”. All its low-order
separations are very unbalanced. In particular, all
separations Of order 3 have just a single vertex on one side
and all other vertices on the other side. This type of
tangles are related to global connectivity. For example,
there is a unique tangle of order 4 in the hexagonal grid:
the big side of a separation of order 3 is obviously the side
that contains all but one vertex. The “region” this tangle
describes is just the grid itself. This does not sound
particularly interesting, but the grid could be a subgraph of
a larger graph, and then the tangle would identify it as a
highly connected region within that graph. A key theorem
about tangles is that every graph admits a canonical tree
decomposition into its tangles of order k. This can be seen
as a generalization of the decomposition of a graph into its
3-connected components. A different, but related
generalization has been given.

The theory of tangles and decompositions generalizes from
graphs to an abstract setting of connectivity systems. This
includes nonstandard notions of connectivity on graphs,
such as the “cut-rank” function, which leads to the notion
of “rank width”, and connectivity functions on other
structures, for example matroids. Tangles give us an
abstract notion of “k-connected components” for these
The canonical decomposition

connectivity systems.
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theorem to this abstract setting can be generalized from
graphs.

This project is a short introduction to the basic theory of
tangles, both for graphs and for general connectivity
systems. We put a particular emphasis on the
correspondence between tangles of order k and k-
connected components of a graph for k < 3, which gives
some evidence to the claim that for all k, tangles of order k
may be viewed as a formalization of the intuitive notion of
“K-connected component”.

. TANGLES IN A GRAPH AND COMPONENTS

In this project, we introduce tangles of graphs, giving a
few examples, and review a few basic facts about tangles,
all well-known and at least implicitly from fundamental
work on tangles.

Let G be a graph. A G-tangle of order k is a family Tof
separations of Gsatisfying the following conditions.

(GT.0) The order of all separations (A,B) €T is less than k

(GT.1)For all separations (A,B) of G of order less than Kk,
either

(AB) € Tor (BAET

(GT2If (L4, [h),
Al UA2 UA3¢G.

(o, ), ([, 003) € T then

(GT.3)V(A)# V(G) for all (A,B)ET

Observe that (GT.1) and (GT.2) imply that for all
separations (A,B) of G of order less than k, exactly one of
the separations (A,B), (B,A) is in T. We denote the order
of atangle T by ord (T).

Fig: 2.1
EXAMPLE 2.1:

Let G be a graph and C <G a cycle. Let T be the set of all
separations (A,B) of G of order 1 such that CEB. Then T
is a G-tangle of order 2.

T trivially satisfies(GT.0). It satisfies (GT.1) , because for
every separation (A,B) of G of order 1, either CEA or
CCESB. Tosee that T satisfies (GT.3).Let (//,,//,) € Tfor
i=1,2,3. Note that it may happen that

V(AW (A) WV (Ag) =V (G) (if IC| = 3) .
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However, no egde of C can be in E(/7,)) for any i, because
C&/J and |7, N 7] < 1Hence E(A;) UE(A,) UE(A3)
= E(G),which implies (GT.2).

Finally, T satisfies (GT.3), becauseV(C)\V (A) = &for all
(AB) T

EXAMPLE 2.2:

Let G be a graph and X £V(G) a clique in G. Note that
for all separations (A,B) of G, either X & (A) or X &
(B).For every k>1, let Tk be the set of all separations
(A,B) of G of order less than k such that X &V (B).

If k <3|X|+1, the set Tk is a G-tangle of order k. We omit

the proof, which is similar to the proof in the previous
example. Instead, we prove that Tk is not necessarily a G-
tangle if k = 2|X| + 1. To see this, let G be a complete
graph of order 3n, k := 2n + 1, and X := V (G).Suppose for
contradiction that Tk is a G-tangle of order k. Partition X
into three sets Xy, X,, X5 of size n. For i = j, Let [/, ;=

G[Xi UXjl and /7 ;= G. Then(//,, [7,) is a separation
of G of order 2n < k. By (GT.1) and (GT.3), we
haVe(:;:, :;:)) € k. HOWGVCI', A12 UA13 UA23 = G,

and this contradicts (GT.2).
LEMMA2.1:
Let T be a G-tangle of order k

(1) If (A, B) is a separation of G with [V (A)] < k then
(AB) €T.

(2) If (AB)eTand (A,B ) is a separation of G of
order < k such that B' 2B, then (A ,B’) €

3)If (AB), (//,//) €T andord (AU/BN/) < k
then(A U//,BN//) €T.

PROOF:

We leave the proofs of (1) and (2).To prove (3), let(A,B),
(17, 7) €T and ord(A U/,B N/7) < k. By (GT.1),either
(AUJ/BN) €Tor BUJAN) € T. As (AU U
(B U7) =G, by (GT.2) .we cannot have (B U/, AN ) €
T.

LEMMA 2.2:

Let T be a G-tangle of order K. Then for every set S &V (G)
of cardinality [S| < k there is a unique connected
component C(T , S) of G\S suchthat for all separations
(A,B) of G with V (A) NV (B) & we have (AB) €T
«=>C(T,S) =B.

PROOF

Let C1, ..., Cm be the set of all connected components of
G\S.
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Forevery | dgm], let /7, Urer /- We define a
separation (.7, /7)) of G as follows. /7, is the graph with
vertex set S UV (/7. ) and all edges that

have at least one end vertex in V (7~ ), and /7 is the
graph with vertex set SW(/j4\I ) and edge set
E(G)\E(/7,)). Note that V (/7 )NV (/7)) =S and

Thus ord(/7-,/7-) < k. Thus for all I, either (77-,77,) €
Tor (L, 1,,) €T

It follows From (GT.2) that (Z,,/,) & T implies
(j[i]\l, :[7]“) T,

because (G[S],G) € Tand // U \IU G[S] = G.
Furthermore, it follows from that (//.,/7,), (7, [0,) € T
implies (Z7/-NJ, 7.,N) ) € T. By (GT.3)we have
(D D) €T and (g, L) €T . Let | &[m] be of
minimum cardinality such that (//,,//,) € T. Since
(D00 )0 05) € Timplies (7,0, [7,N)) € T, the
minimum set | is unique. If |I| = 1,then we let C(T , S) :=
[7 for the unique element i €1. Suppose for contradiction
that [I] >1, and let i €1. By the minimality of |I] we have
(Dgrye Dpry) € Tand thus (£ i}, 21 4\i}) € T. This
implies (/7-\{i},/7-\{i}) € T, contradicting theminimality
of |1].

Let G be a graph. We say that subgraphsC1, ..., Cm &G
touch if there is a vertex v €N _; (/7)) or an edge e €
E(G) such that each /7 contains atleast one end vertex of
e. A family C of subgraphs of G rouches pairwise if all
[, [J, € Ctouch, and it touches triplewise if all /7y, /[y,
[J, € ctouch. A vertexcover (or hitting set) for C isaset S
&V (G)suchthatSNV (C)= &

THEOREM2.1

A graph G has a G-tangle of order k if and only ifthere is a
family C of connected subgraphs of G that touches
triplewise and has

no vertex cover of cardinality /ess than k.
PROOF:

In fact, defines a tangle of a graph G to be a family C of
connected

subgraphs of G that touches triplewise and its order to be
the cardinality of a

minimum vertex cover.

A bramble is a family C of connected subgraphs of G that
touches pairwise. In this sense,a tangle is a special
bramble.For the forward direction, let T be a G-tangle of
order k.We let

C:={C(T,S)|S &V (G) with |S| <k}.

C has no vertex cover of cardinality less than k, because if
S &V (G) with|S] <k then SNV (C(T, S)) = & It remains
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to prove that C touches triplewise.Fori=1,2,3,letCie C
and Si &V (G) with [Si| <k such that /7, = C(T, /7,

Let Bi be the graph with vertex set V (/) US and all
edges of G that have atleast one vertex in V (/7-), and let
Ai be the graph with vertex set V (G) \ V (/7-)and the
[1-S07-, we
G by (GT.2),

remaining edges of G. Since C(T , /7-) =
have (//,,[/;) € T.Hence [ U, Ul
and this implies that //;, [/, /3 touch.

For the backward direction, let C be a family of connected
subgraphs of G that touches triplewise and has no vertex
cover of cardinality less than k. Let T be the set of all
separations (A,B) of G of order less than k such that C &B\
V (A) for some C € C It is easy to verify that T is a G-
tangle of

Order k.

Let T ,T be x-tangles. If T SWe say that T is an
extension of T . The truncation of T to order k < ord(T ) is
the set {(A,B) & T /ord(A,B) <Kk},

which is obviously a tangle of order k. Observe that if T is
an extension Of T then ord(T ) < ord(T ), and T is the
truncation of T to order ord(T ).

M. CONCLUSION

Thus, we proved that the correspondence between tangles
of order k and k-connected components. In particular, we
proved that there is a one-to-one correspondence between
the triconnected components of a graph and its tangles of
order 3.
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