INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 93, VVolume 33, Number 02, 2017

ISSN: 2349-4689

Efficient Fault Tolerant Parallel Filter Using BCH
Codes with FPGA

Priyanka Patel', Prof. Tarun Verma®

Research Scholar, 2Assistant Professor

Department of Electronics and Communication Engineering, LNCT, Bhopal

Abstract - Signal processing is the bone of every digital system
dealing with every field equipped with computing and logic
circuits for controlling applications. The digital system is
prone 10 several problems like faults, errors and mismatches,
and for that fault tolerant filter techniques. The fault tolerant
Structures are designed based on different parallel
architectures 10 reduce the errors introduced by circuit due to
faults. The several error correction codes are adopted for
getting better performance. This paper deals with the parallel
architecture of parallel FIR filter using Bose - Chaudhuri -
Hocquenghem (BCH) Codes. BCH Codes are helps to create
large class of multiple random error corrections, it is a kind of
cyclic codes. The design is implemented on FPGA devices. The
proposed methodology has better reliable architecture of fault
tolerant architecture as shown in the synthesis outcomes.

Keywords - BCH Codes, Error Corrections, FIR filter, Fault
Tolerant, FPGA.

I INTRODUCTION

The demand for processing power is increasing steadily.
In many application fields, there can never be enough
computing power. Simulations in the field of engineering,
like virtual crash tests, or in the field of bioinformatics, as
protein folding, are examples for applications that require
enormous computing power. In any case, significantly
customer PCs keep on demanding for more processing
power. Moore's Law, foreseeing that the execution of chip
duplicates about at regular intervals, has ended up being
valid previously, and will in all likelihood remain valid
for the not so distant future. One contributing factor to
this performance increase is technological improvements.
However, the direct influence of technology on computing
performance is limited. Architectural improvements are
another main source for sustained performance
improvements.

In the past, single processor performance has been in the
main focus for computer architecture. But even in this
case, the exploitation of parallelism at instruction level is
a key element. As instruction level parallelism is limited
in single processor applications, further performance
increases can only be achieved by exploiting parallelism
at the higher levels of thread or process parallelism. As an
outcome, current “processors” fuse various processor
centers that together frame a solitary shared memory

WWW.ijspr.com

multiprocessor. While the architecture of the processor
cores does not fundamentally differ from the architecture
of single processors, architectural research must optimize
communication among the processors.

In large parallel systems, which are typically message-
passing multicomputer, a network interface controller
connects the individual nodes to the network.
Traditionally, the system interface controller is associated
with its home node like each other information/yield
device over a hierarchy of importance of peripheral
interconnects. While this is a suitable answer for moderate
devices like hard plates, it has turned into a huge
bottleneck for system interface controllers (NIC) and
coprocessor devices like field-programmable gate arrays
(FPGA).

Additionally, the classical assumption that a computing
node consists of a single processor with memory and 1/0
components iS outdated. Multi-core processors have
turned every computing node into a small-scale shared
memory system. The pattern towards higher parallelism is
self-evident: dual core processors are standard
notwithstanding for personal computers, and every single
real merchant are as of now presenting four or eight center
processors. Inquire about models of multi-attachment
frameworks include up to 80 centers on a single kick the
bucket. Today’s network interface architectures do not
consider this fact sufficiently.

Il. THEORY OF FAULT TOLERANCE

High reliability is needed in many signal processing
applications to ensure continuous operation and to check
the integrity of results. High reliability is needed in life
critical applications, such as aircraft guidance systems or
in medical equipment, where failures can jeopardize
human lives, or in remote applications, such as satellites
or underwater acoustic monitors, where repair is
impossible or prohibitively expensive. Robustness is also
needed in systems that must operate in hazardous
environments, such as military equipment, or in spacecraft
that must be protected against radiation. In all of these
applications there is a high cost of failure, and reliability
is of great importance.

IJSPR | 88

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 93, VVolume 33, Number 02, 2017

The complexity of signal processing algorithms has been
steadily increasing due to the availability of special
purpose, high-speed signal processors. Many algorithms
that were once too computationally intensive, are now
implemented in real time by multiprocessor systems. In
these systems, the large amount of hardware increases the
likelihood of a failure occurring, and makes reliable
operation difficult.

It is impossible to guarantee that components of a system
will never fail. Instead, failures should be anticipated, and
systems designed to tolerate failures gracefully. This
design methodology is known as fault-tolerant computing
and it received considerable attention by early computer
designers because of the unreliability of existing
components. After the development of integrated circuits,
which were several orders of magnitude more reliable,
fault-tolerance became a Secondary issue. Attention was
focused on developing faster, more complex circuits, and
as a result, circuit densities grew exponentially. In many
areas, however, semiconductor reliability has not kept
pace with the level of integration, and fault-tolerance is
becoming a major issue again.

A. Modular Redundancy

In order for a system to be fault-tolerant, it must contain
some form of redundancy. By redundancy we mean
additional states that arise during faults and that are used
to detect and correct errors. Without redundancy, it is
impossible for a system to be fault-tolerant since it is
unable to distinguish between valid and invalid internal
states. Utilizing redundancy is in contrast to the goal of
eliminating as much redundancy as possible. Redundancy
generally increases the complexity of a system and leads
to increased cost.

Input |

Figure 2.1 Example of N-modular redundancy used to
protect system S.

The traditional method of adding redundancy and fault-
tolerance to a system is through modular redundancy [7].
This is a system-level approach in which several copies of
the system operate in parallel, using the same input. Their
outputs are compared with voter circuitry and will agree if

WWW.ijspr.com

ISSN: 2349-4689

no errors have occurred. Otherwise, if the outputs are not
identical, then an error has occurred and the correct result
may be determined using a majority vote. A system, S,
protected by modular redundancy is shown in Figure 2.1.
Modular redundancy (MR) is the most widely used fault-
tolerance technique. This is because it can be used to
protect any system and since it decouples system and
fault- tolerance design.

B. Coding Theory

Systems that tolerate failures have been of interest
since the 1940’s when computational engines were
constructed from relays. Fault detection provides no
tolerance to faults, but gives warning when they
occur. If the dominant form of faults is
transient/intermittent, recovery can be initiated by a
retry invoked from a previous checkpoint in the
system at whose time the system state was known to
be good. Design errors, whether in hardware or
software, are those caused by improper translation of
a concept into an operational realization. The three
major axes of the space of fault-tolerant designs are:
system application, system structure, and fault-
tolerant technique employed. The most stringent
requirement for fault tolerance is in real-time control
systems, where faulty computation could jeopardize
human life or have high economic impact.
Computations must not only be correct, but recovery
time from faults must be minimized. Specially
designed hardware is employed with concurrent
error detection S0 that incorrect data never leaves the
faulty module. The more redundancy we add, the
more reliably we can detect and correct errors but
the less efficient we become at transmitting the
source data. Figure 2.2 demonstrated the typical
diagram of system with error correcting code.

Source Encoder

Serids Sourcel 1011 |Encodes Source
— Message into

Channel
\ May Introduce

1]| .
Message Codeword 1011010 Errors
ﬁ 10010
Receives 1011 |Corrects error
Source and Reclaims
Message | Source Message
~ Receiver Decoder

Figure 2.2 Typical Diagram of a System with an Error
Correcting Code.

Forward recovery attempts to restore the system by
finding a new state from which the system can continue
operation. Backward recovery attempts to recover the

1ISPR | 89

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 93, VVolume 33, Number 02, 2017

system by rolling back the system to a previously saved
state, assuming that the fault manifested itself after the
saved state. Forward error recovery, which produces
correct results through continuation of normal processing,
is usually highly application-dependent.

Backward recovery techniques require some redundant
process and state information to be recorded as
computations progress. Error detection and correction
codes have proven very effective for regular logic such as
memories and memory chips have built-in support for
error detection and correcting codes.

M. PROPOSED ARCHITECTURE

This paper deals with the parallel architecture of parallel
FIR filter using Bose - Chaudhuri - Hocquenghem (BCH)
Codes. BCH Codes are helps to create large class of
multiple random error corrections; it is a kind of cyclic
codes. The design is implemented on FPGA devices. The
proposed methodology has better reliable architecture of
fault tolerant architecture as shown in the synthesis
outcomes.

ISSN: 2349-4689

BCH is genuinely clear, playing out the decoding steps is
a great deal more intricate (Zambelli et al. 2012). System
planners must adjust the high multifaceted nature of BCH
decoders with their general system necessities (Strukov
2006). The decoders must give high throughput, either by
running at high clock speeds or by executing bit parallel
operation. The most extreme clock speed of the decoder is
constrained by the procedure innovation and the
unpredictability of the decoder. Additionally, adding bit-
parallel operation expands the range of the decoder and
makes it more hard to accomplish high clock speeds.
Constrained accessible area for the decoder can likewise
confine the quantity of mistakes that can be amended.

By building up a more area effective BCH decoder, a few
potential outcomes open up other than just lessening area.
The area savings can be utilized to add bit-parallel
operation to enhance throughput. Then again the decoder
could be intended to right more blunders developing the
helpful existence of blaze memory or expanding the bit-
rate of a communication channel.

S

Syndrome
Vectors

>

2

Error Locator
Equation

C

Chien
Search

>

Figure 4. 1 Basic BCH decoder structure.

A common BCH decoder usage is basically a 3-arrange
pipeline as appeared in figure 4.1. The three phases of the
pipeline are disorder computation, producing the mistake
locator polynomial, and finding the wunderlying
foundations of the blunder locator polynomial (Hong and
Vetterli 1995). Every pipeline arrange works at the same
time and freely. Data is passed between the phases when
the present stage is finished and the following stage is
ready to get the data. This pipelined setup permits the
decoder to work on 3 codes all the while. The primary
stage, disorder figuring is comparable in design to
encoding and at comparable cost. A basic rationale circuit
known as a Linear Feedback Shift Register (LFSR) is
ordinarily utilized for disorder figuring. As LFSRs are
utilized as a part of encoding and disorder estimation,
work has gone to streamline fast piece parallel LFSR
operation for BCH.

Computing the error locator polynomial is performed
successive approximation utilizing the Berlekamp-Massey
algorithm. The execution of the calculation requires
numerous multipliers and dividers, and expends a huge
part of the decoder. General work into advanced
Berlekamp-Massey usage has been done and also the

WWW.ijspr.com

sharing of Berlekamp-Massey units between BCH
channels.

BCH is a block based error correction code implying that
it works on a square ofbits at time (Bose and Ray-
Chaudhuri 1960). It changes the info data by adding
exceptionally figured excess check bits to shape a
codeword. The suitable code can be chosen for various
bits to be rectified and a picked square size. Bigger square
sizes have bring down capacity overhead, however higher
algorithmic multifaceted nature. This gives BCH various
advantages, including:

e Configurability for number of bits to be
corrected.

e Scales to different word sizes.

e Optimal algebraic method for decoding.

e No error floor.

e Original data embedded in codeword.

Every codeword inside the code is developed with the end
goal that it is a base Hamming separation far from some
other codeword. The Hamming separation, dmin is
dictated by the quantity of bits that must be changed
inside a legitimate codeword to change it into another

1ISPR | 90

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 93, VVolume 33, Number 02, 2017

substantial codeword. The number ofbit mistakes that can
be recognized is in this manner one not as much as the
Hamming separation. Figure 3 demonstrates the structure
of a BCH codeword, including the message and the
repetitive ECC data that is added to shape the codeword.

The functionality of the decoder is to figure out which
valid codeword codeword most nearly
represents. In the event that a codeword gets enough bit
errors to cross half or a greater amount of the Hamming
separation between two codewords, it will be erroneously
distinguished. Hence the number that can be corrected, t,
is identified with the base Hamming separation by the
accompanying connection;

received

Codeword
— .
QIIIIIIIILIUH
—~ ~
Message ECC

Figure 4.2 BCH codeword structure.

The encoding and decoding BCH codes is performed by
utilizing limited fields. A short diagram of finites fields is

ISSN: 2349-4689

fundamental in understanding both the component of
BCH codes and the proposed enhancement.

I SYNTHESIS RESULTS

The simulation of the proposed system has done on the
Xilinx ISE synthesis tool the summary of device
utilization has given below table 5.1 under the heading
device utilization summery.

FIR_BCH

decoder_in(14:0 encoder_out(14:0)

error_num(1:0)

error_too_much

FIR_BCH

Fig. 4.1 RTL Schematic of Proposed Architecture

Table 4.1 Timing summery of device utilization

Device utilization summary:
Selected Device :
Number of Slices:
Number of Slice Flip Flops:
Number of 4 input LUTs:
Number of IOs:
Number of bonded IOBs:

IOB Flip Flops:
Number of GCLKs:

4v1x80£f£1148-12

194 out of 35840 0%
9 out of 71680 0%
347 out of 71680 0%
50
50 out of 768 6%
16
1 out of 32 3%

Table 5.2: Comparison of Parameters with Existing Work
with Eleven FIR Filters

Parameters Proposed Work Existing Work
Slices 194 14422
Flip Flops 9 6478
LUTs 347 28331
Frequency 780.762 MHz -
Delay 14.633 ns -

1. CONCLUSION AND FUTURE SCOPES

The fault tolerant architecture of the proposed system with
the utilization of 15 parallel FIR filter architecture and
BCH codes are performed well in terms of area than the
previous systems. The proposed architecture has lower

WWW.ijspr.com

complexity in architecture while working faster. The
frequency of circuit is 780.762 MHz. The scheme can be
used for parallel filters that have the same response and
process different input signals. The proposed scheme can
also be applied to the IIR filters. Future work will
consider the evaluation of the benefits of the proposed
technique for IR filters. The extension of the scheme to
parallel filters that have the same input and different
impulse responses is also a topic for future work.

REFERENCES

[1] Z. Gao et al., "Fault Tolerant Parallel Filters Based on Error
Correction Codes,” in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 2, pp. 384-
387, Feb. 2015.

[2] Z. Gao, W. Yang, X. Chen, M. Zhao, and J. Wang, “Fault
missing rate analysis of the arithmetic residue codes based

1JSPR | 91

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (1JSPR)

Issue 93, VVolume 33, Number 02, 2017

fault-tolerant FIR filter design,” in Proc. IEEE IOLTS, Jun.
2012, pp. 130-133.

[3] P. Reviriego, C. J. Bleakley, and J. A. Maestro, “Strutural
DMR: A technique for implementation of soft-error-
tolerant FIR filters,” IEEE Trans. Circuits Syst., EXxp.
Briefs, vol. 58, no. 8, pp. 512-516, Aug. 2011.

[4] Y.-H. Huang, “High-efficiency soft-error-tolerant digital
signal process—ing using fine-grain subword-detection
processing,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 2, pp. 291-304, Feb. 2010.

[5] S. Pontarelli, G. C. Cardarilli, M. Re, and A. Salsano,
“Totally fault tolerant RNS based FIR filters,” in Proc.
IEEE IOLTS, Jul. 2008, pp. 192-194.

[6] B. Shim and N. Shanbhag, “Energy-efficient soft error-
tolerant digital signal processing,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 14, no. 4, pp. 336-348, Apr.
2006.

[7]1 M. Nicolaidis, “Design for soft error mitigation,” IEEE
Trans. Device Mater. Rel., vol. 5, no. 3, pp. 405-418, Sep.
2005.

[8] A. Reddy and P. Banarjee “Algorithm-based fault detection
for signal processing applications,” IEEE Trans. Comput.,
vol. 39, no. 10, pp. 1304-1308, Oct. 1990.

[9] T. Hitana and A. K. Deb, “Bridging concurrent and non-
concurrent error detection in FIR filters,” in Proc. Norchip
Conf., 2004, pp. 75-78. [9]

[10] P. P. Vaidyanathan. Multirate Systems and Filter Banks.
Upper Saddle River, NJ, USA: Prentice-Hall, 1993. [10]

A. Sibille, C. Oestges, and A. Zanella, MIMO: From
Theory to Imple-mentation. San Francisco, CA, USA:
Academic Press, 2010.

[11] P. Reviriego, S. Pontarelli, C. Bleakley, and J. A. Maestro,
“Area efficient concurrent error detection and correction for
paral-lel filters,” IET Electron. Lett., vol. 48, no. 20, pp.
1258-1260, Sep. 2012.

[12] A. V. Oppenheim and R. W. Schafer, Discrete Time Signal
Processing. Upper Saddle River, NJ, USA: Prentice-Hall
1999.

[13] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall. 2004.

[14] R. W. Hamming, “Error correcting and error detecting
codes,” Bell Syst. Tech. J., vol. 29, pp. 147-160, Apr. 1950.

[15] R.C. Baumann. Radiation Induced Soft Errors in Advanced
Semiconductor Technologies. IEEE Transactions on
Device and Materials Reliability, 5(3):305-316, Sept. 2005.

WWW.ijspr.com

ISSN: 2349-4689

1ISPR | 92

