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Abstract—this paper presents a “design of high order digital 
phase locked loop”. This paper also present novel approach to 
overcome these difficulties by allowing high order loops to be 
viewed as a natural extension of lower order ones. This is 
accomplished by adding nested first-order feedback loops 
around a basic first-order Loop Filter. In  the  Previous  method 
the  fast  locking  DPLL operation  Reduces  the  lock  time  by  a  
factor  about  4.40 Compared  to  its  conventional  DPLL 
counterpart.  But this method more effective model presented 
has been implemented and tested in Simulink®. 
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1. INTRODUCTION

The exact analysis of 3rd order PLLs, i.e., those including a 
2nd order Loop Filter (LF), is normally eluded because it is 
very complex. Even most recent books on DPLL limit 
themselves, at best, to calculating s-domain equations without 
giving any practical design guidelines [1-2]. A general 
practice is to approximate the 3rd order response by a 2nd order 
and precede with the well known design equations. The goal 
of this paper however, is to create an alternative approach to 
the intuitive and analytic design of 3rd, and even 4th order 
loops, as a natural extension of second order digital phase 
locked loop. This approach will also be seen as related to the 
extension of a conventional DPLL (second order) with the so 
called Aided acquisition loops [3]. The concepts shown here 
are general, but of particular interest in applications where the 
DPLL needs to be operated in a wide hold range, i.e., not a 
small fraction of  the Free Running Frequency (FRF) of the 
oscillator, such as in on-chip tuning applications [4], 
wideband signal generation detection, chirp radar signals or 
spread spectrum clocking.  

II. THE SECOND-ORDER DPLL

The block diagram of the novel flash DPLL employing HPF 
is shown in Fig.1.The DPLL circuit consists of a  phase 
frequency  detector  (PFD),  a  charge pump    (CP),    a    low-
pass  filter  (LPF),  High  Pass  Filter (HPF) and a   voltage-
controlled oscillator (VCO) for  fine tuning  along with a 
High pass filter (HPF). 

Figure.1block diagram of the Novel Flash Locking DPPL 

VCO is usually modeled by an integrator, since phase is the 
integral of instantaneous frequency with gain K rads/(V.s). As 
for the Phase Detector, its model depends on the 
implementation (multiplier, digital, etc.), but it is usually 
approximated by the phase difference within a limited range, 
scaled by a gain K. Loop filter is assumed linear, and thus the 
simplest case, apart from a trivial PLL with no filter, is a first 
order one. Thus, its most general transfer function, assuming 
unity DC gain, is: 
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Figure 2:  second order digital pll 

Its bode plot is represented in Figure 2 for ω < ω. Design 
equations for this particular case can be found elsewhere, 
although they are quite often buried by particular electrical 
parameters dependent on the implementations of the filters 
(active, passive, switched capacitor, etc.). Since DC filter gain 
is unity, PLL gain is defined as K= K.K. In short, simple 
stability analysis shows that stability is guaranteed if ω >ω ≥ 
0. An interesting case is when ω =0 giving rise to a 2nd order-
Type II PLL. 
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III. THIRD-ORDER DPLL 

To our view, the problem can be posed in terms of what 
thefunctional dependence of the phase at the output of the PD 
is like, how the frequency error information can be extracted 
from it, and how they are combined to attain a given 
dynamics of the loop. We can take an aided acquisition loop 
could be modelled as indicated in the Figure 4, where the low 
pass filter 1(LF1) and low pass filter 2 ( LF2), and only a 
conventional PD  is used. Differentiator represents derivative 
of the phase (θ ≡ θ out –ω  FRF t). Note that we do not claim this 
model is equivalent to that in Figure 3: Acquisition dynamics 
is a very complex process and a nonlinear device such as a FD 
cannot be substituted by a linear operator. In this sense 
architecture in figure 3 is more flexible and can provide faster 
phase and frequency error signals resulting in a wider lock-in 
range. 

Figure3. all digital DPLL Simulink 

Operation of the above model can be described as follows. 
When a transient is produced at the input, because of a 
frequency hop, the lower loop reacts and tries to correct the 
phase difference in the same way as a conventional PLL 
(Figure 1) would do. If LF2 is also low pass, and has a long 
time constant, it will filter out the fast variations at the 
differentiator output and error signal e will remain almost 
unchanged at its DC value. As the frequency at VCO output 
gets closer to the input value, and phase starts to be linear 
with time, the differentiator will give a DC value proportional 
to the frequency (to the difference with the FRF, actually), 
which will be transmitted at LF2 output, i.e., e. Then, signal e, 
which initially produced the frequency change, will reduce in 
the same amount. Clearly, Loop Filter 2 can be now combined 
with Loop Filter 1 to give a single Loop Filter. If Loop Filter 
1 is of order one, as in Equation (1), and Loop Filter 2 is also 
of order one with a single pole at ω, i.e. 
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we come up with a second-order loop filter and thus a 3rd 
order PLL.  
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It is well known that this pole is the minimum requirement to 
allow the tracking of frequency hops with zero steady-state 
phase error. The point to remark now is that we have shown 
how a 2nd order PLL with the aided acquisition can be seen 
as equivalent to a 3rd order, Type II PLL. In this process we 
have gained some insight into the meaning of each one of the 
time constants and signals into the circuit: 

(1) On one side ω 2 << ω 1P    so that the transient of the 
loop is similar to that of a 2nd order loop. 

(2) Residual phase difference after a transient tends to be 
negligible within a time frame proportional to time 
constant 1/ω 2. 

(3) Signal e, carries, in lock conditions, a value 
proportional to ω 0 — ω FRF. 

(4) Additionally, stability conditions are very easy to 
check. 

Note that in the case of a zero of Loop Filter 1 at infinity, first 
condition is automatically fulfilled. The second inequality is 
also fulfilled if the 2nd order loop was stable, and the added 
feedback has, as suggested, a longer time constant. For 
sampled PLL, remarkably Charge Pump PLLs, additional 
stability conditions are obtained based on Z-domain analysis. 
Charge Pump PLLs are essentially Type II PLLs of order 2 or 
3, and thus stability in terms of electrical variables, found 
elsewhere [6-7], can be easily translated to our parameters in 
Equation (3). In most practical cases LF1 and LF2 are merged 
into a single filter. 

IV. HIGHER ORDER DPLL

The concept of introducing an additional feedback loop can be 
once more used to detect, and correct, a typical situation 
where the input signal is a chirp whose frequency varies 
linearly with time, either intentionally or due to Doppler 
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Effect. The modification in the loop studied so far is only able 
to correct the phase error when the input frequency is constant 
(possibly after a frequency step) but not to follow a chirp 
while keeping zero phase error. 

Figure 4- Structure of third order charge pump DPLL 

If the filter LF3 is of first order too, with cut-off frequency ω
3 then, the overall performance of the two loops can be 
assimilated to a single loop filter whose response is now 
Equation 4[1]: 
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 Third order Charge pump PLL filter output in Figure 6 where 
the time constant of the new filter, 1/ω 3, is higher than 1/ω 2.

This condition is however not needed for the correct operation 
of the loop since, according to Equation 4 the two poles can be 
exchanged. The resulting filter is a generalization to third-order 
of the order two Loop Filter suggested by Gardner [6], giving 
rise to a Type III PLL of 4th order! (Gardner’s filter can be 
recovered but just making ω 1P ω≡ 3). The double pole at the 
origin in the filter is an indication that the PLL is able to follow 
frequency chirps with zero steady-state phase error, as 
originally suggested for the Gardner’s filter. Note that typical 
4th order PLLs reported in most papers are not of this kind: the 
additional pole is not at the origin and its role is to reduce 
phase noise [10]. Stability conditions for a 4th order loop 
cannot be analytically obtained and approximations have not 
been reported to the best of our knowledge. However it can be 
expected that, in our particular design case, the conditions for 
the 3rd order loop are still valid. 

V. SIMULATION RESULTS 

 A  Simulink® model, which allows an evaluation of how the 
various feedback loops affect the operation of the DPLL, and 

the evolution of the signals involved, was implemented. We 
will proceed by analysing, first the operation of the 2nd order 
loop and then appraise how it is affected by the introduction 
of the new loops. This will mimic the design procedure to be 
followed, regardless of whether the loop filter is implemented 
in a compact manner in the final design (just plug-in the LF 
parameters from the design), or with the explicit feedback 
loops.   

(A) Transient Analysis. The parameters chosen for the PLL 
are as shown in Table I. Assuming that only LF1 is active, 
and the other disconnected, the expected behaviour of the 
PLL can be  summarized in the parameters also provided in 
table I. Phase Detector has been modelled as a perfect Analog 
multiplier,  while VCO is assumed ideal. 

Damping Fact Natural Freq.  Hold-in Range Lock-in Range  

ξ = 0.14 2.104 ~ (55%FRF) ~(30%FRF) 

Table I. PLL parameters (frequencies in rads/sec) 

Figure 5- Step response for different values of ξ of Charge pump DPLL 

Figure5 shows the step response of third order system for 
different damping factor. It can be obsered that, as the 
damping factor of the system. After the first transient at t=0, 
signal tends to a steady DC value, as a clear indication of a 
phase difference between input and output signals.  

Figure 6-Third order Charge pump PLL filter output 
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Figure7-Third order Charge pump PLL Phase detector output 

(B) Steady State Analysis. Not only transient behaviour is 
important but also stationary response in terms of how 
filtering properties of the PLL preserve when the order is 
Figure 10, 11, 12 shows Third order Charge pump PLL filter 
output, Phase detector output and VCO output and input 
signalwith ∆θ=90 respectively. It can be obsered that when 
∆θ=90 ,and the reference signal  is  track  PD  output is  zero.   

Figure-8 Third order Charge pumps DPLL VCO output and input signal 

The  input  provided  in  set  up  is  the    order  coefficient  of 
Loop  filter.  For  e.g.,  using  the  transfer function of Loop 
filter incorporated in automated program written in Matlab 
which guides to find the input to find the proper  range  of 
input  applied  to  the  set  up  assembly  to  get  desired 
output. Similarly  for  other  input  parameters  Like,  VCO 
gain  in  Hz/volts  and  quiescent  frequency  were found out. 
For  analysis  of  third  order  PLL  setup  used  is  almost 
same  as  second  order  PLL,  Input  for assemble are 
Transfer Function of loop filter, Kvco, quiescent frequency of 
VCO. 

Figure9- Setup for measurement of PLL parameters in Simulink 

VI. DISCUSSION OF RESULTS AND CONCLUSIONS

A Simulink® model has been developed to demonstrate the 
concepts presented here i.e. We have presented high order 
PLLs as a natural extension of lower order ones, by the 
addition of feedback loops. The aim of these loops is to 
reduce phase error under steady frequency at the input, and 
chirp variations. This model can be used regardless of 
whether implementation contains separated loops or not, to 
gain insight into the system’s behaviour. The idea of using 
feedback loops in the Loop Filter has also been related to the 
concept of aided acquisition. 
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