# Soft Fixed-Point Theorems for Integral Type Mappings through Rational Expression

### Ramakant Bhardwaj

Department of Mathematics, APS University Rewa MP

Abstract - In the present research paper, some soft fixed-pointtheorems are established for integral type mappings for rational expressions. These results are proved by the help of basic concepts of fixed-pointtheory. To obtain the results altering distance functions are used. Obtained results are generalized form of well-known results in complete metric spaces.

# I. INTRODUCTION & PRELIMINARIES

A new category of contractive fixed point problem was introduced by M. S. Khan,M. Swalech and S. Sessa [10]. In this work, they introduced the concept of altering distance function which is a control function that alters distance between two points in a metric space.

In the year 1999, Molodtsov [14] initiated a novel concept of soft sets theory as a new mathematical tool for dealing with uncertainties. Detail about soft sets, soft points, soft fixed point theorems can be seen in [4-8, 11-13], The present work delt with some soft fixed point results for rational expressions using altering distance function for softmetric space, which is motivated by Molodtsov[14], Khan M.S. et.al [10]. and Binciri [3]

**Definition1.A**: Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if and only if X is a mapping from E into the set of all subsets of the set  $X, i.e.F: E \rightarrow P(X)$ , where P(X) is the power set of X.

**Definition 1B:** Let  $\Re$  be the set of real numbers and  $B(\Re)$  be the collection of all nonempty bounded subsets of  $\Re$  and E taken as a set of parameters. Then a mapping  $F: E \to B(\Re)$  is called a soft real set. It is denoted by (F, E). If specifically (F, E) is a singleton soft set, then identifying (F, E) with the corresponding soft element, it will be called a soft real number and denoted  $\tilde{r}, \tilde{s}, \tilde{t}$  etc.

 $\overline{0}$ ,  $\overline{1}$  are the soft real numbers where  $\overline{0}(e) = 0$ ,  $\overline{1}(e) = 1$  for all  $e \in E$ , respectively.

**Definition 1C**: A soft set over X is said to be a soft point if there is exactly one  $e \in E$ , such that  $P(e) = \{x\}$  for some  $x \in X$  and  $P(e') = \phi, \forall e' \in E \setminus \{e\}$ . It will be denoted by  $\tilde{x}_e$ .

**Definition 1D**: Two soft points  $\tilde{x}_e$ ,  $\tilde{y}_e$  are said to be equal if e = e' and P(e) = P(e') i.e. x = y. Thus  $\tilde{x}_e \neq \tilde{y}_e \iff x \neq y$  or  $e \neq e'$ .

ISSN: 2349-4689

**Definition 1** E: A mapping  $\tilde{d}: SP(\tilde{X}) \times SP(\tilde{X}) \to \mathbb{R}(E)^*$ , is said tobe a soft metric on the soft set  $\tilde{X}$  if d satisfies the following conditions:

(M1) 
$$\tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) \cong \overline{0} \text{ for all } \tilde{x}_{e_1}, \tilde{y}_{e_2} \cong \tilde{X},$$

(M2) 
$$\tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) = \overline{0}$$
 if and only if  $\tilde{x}_{e_1} = \tilde{y}_{e_2}$ ,

$$(M3) \qquad \tilde{d}\left(\tilde{x}_{e_1},\tilde{y}_{e_2}\right) = \tilde{d}\left(\tilde{y}_{e_2},\tilde{x}_{e_1}\right) \qquad \text{for} \qquad \text{al}$$
 
$$\tilde{x}_{e_1},\tilde{y}_{e_2} \widetilde{\in} \tilde{X},$$

$$(\text{M4}) \qquad \tilde{d}\left(\tilde{x}_{e_1}, \tilde{z}_{e_3}\right) \widetilde{\leq} \, \tilde{d}\left(\tilde{x}_{e_1}, \tilde{y}_{e_2}\right) + \tilde{d}\left(\tilde{y}_{e_2}, \tilde{z}_{e_3}\right)$$
 for all  $\tilde{x}_{e_1}, \tilde{y}_{e_2}, \tilde{z}_{e_3} \widetilde{\in} \, \tilde{X}$ .

The soft set  $\tilde{X}$  with a soft metric  $\tilde{d}$  on  $\tilde{X}$  is called a soft metric space and denoted by  $(\tilde{X}, \tilde{d}, E)$ .

**Definition 1F**(Soft Complete Metric Space): A soft metric space  $(\tilde{X}, \tilde{d}, E)$  is called complete, if every Cauchy Sequence in  $\tilde{X}$  converges to some point of  $\tilde{X}$ .

**Definition 1 G:**Let $(\tilde{X}, \tilde{d}, E)$  be a soft metric space. A function $(f, \varphi) : (\tilde{X}, \tilde{d}, E) \to (\tilde{X}, \tilde{d}, E)$  is called a soft contractive mapping if there exist a soft real number  $\alpha \in R, 0 \le \alpha < 1$  such that forevery point $\tilde{x}_{\lambda}, \tilde{y}_{\mu} \in SP(X)$  we have

$$\tilde{d}\left((f,\varphi)(\tilde{x}_{\lambda}),(f,\varphi)\big(\tilde{y}_{\mu}\big)\right)\leq\,\alpha\tilde{d}\left(\tilde{x}_{\lambda},\tilde{y}_{\mu}\right)$$

**Definition 1H[9]:** The function  $\psi : [0, \infty) \to [0, \infty)$  is called an altering distance function if the following properties are satisfied:

- (i)  $\psi$  is continuous and non-decreasing,
- (ii)  $\psi(t) = 0$  if and only if t = 0.

## II. MAIN RESULTS

**Theorem 2.1:**Let $(\tilde{X}, \tilde{d}, E)$ be a soft complete metric space. Suppose the soft mapping $(f, \varphi) : (\tilde{X}, \tilde{d}, E) \to (\tilde{X}, \tilde{d}, E)$ satisfies the soft contractive condition:

$$\psi\left[\tilde{d}\left((f,\varphi)(\tilde{x}_{\lambda}),(f,\varphi)(\tilde{y}_{\mu})\right)\right] \leq \psi\left[\widetilde{\mathcal{M}}\left(\tilde{x}_{\lambda},\tilde{y}_{\mu}\right)\right] - \varphi\left[\widetilde{\mathcal{M}}\left(\tilde{x}_{\lambda},\tilde{y}_{\mu}\right)\right](2.1.1)$$

For each  $\tilde{x}_{\lambda}$ ,  $\tilde{y}_{u} \in \tilde{X}$ ,  $\tilde{x}_{\lambda} \neq \tilde{y}_{u}$ , where  $\psi$ ,  $\varphi$  are altering distance functions, and

$$\widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda},\widetilde{y}_{\mu}\right) = \alpha \int_{0}^{\left\{\widetilde{d}^{3}\left(\widetilde{x}_{\lambda},(f,\varphi)\left(\widetilde{x}_{\lambda}\right)\right) + \widetilde{d}^{3}\left(\widetilde{y}_{\mu},(f,\varphi)\left(\widetilde{y}_{\mu}\right)\right)\right\}} \left\{\xi(t)dt + \gamma \int_{0}^{\left\{\widetilde{d}\left(\widetilde{x}_{\lambda},\widetilde{y}_{\mu}\right)\right\}} \xi(t)dt$$

Where  $\alpha, \gamma > 0$  and  $2\alpha + \gamma < 1$  is a soft constant. Then  $(f, \varphi)$  has a unique soft fixed point in  $\tilde{X}$ .

**Proof:** Let  $\tilde{\chi}_{\lambda}^{0}$  be any soft point in SP(X).

$$\operatorname{Set} \tilde{x}_{\lambda_1}^1 = (f, \varphi)(\tilde{x}_{\lambda}^0) = \left(f(\tilde{x}_{\lambda}^0)\right)_{\varphi(\lambda)}$$

$$\widetilde{x}_{\lambda_{n+1}}^{n+1} = (f, \varphi) (\widetilde{x}_{\lambda_n}^n) = (f^{n+1}(\widetilde{x}_{\lambda}^0))_{\omega^{n+1}(\lambda)}, --$$

ISSN: 2349-4689

Now consider,

$$\begin{split} \widetilde{\mathcal{M}}\big(\widetilde{x}_{\lambda_{n-1}}^{n-1},\widetilde{x}_{\lambda_{n}}^{n}\big) &= \alpha \int_{0}^{\left\{\frac{\widetilde{a}^{3}\left(\widetilde{x}_{\lambda_{n-1}}^{n-1},(f,\varphi)\left(\widetilde{x}_{\lambda_{n-1}}^{n-1}\right)\right) + \widetilde{a}^{3}\left(\widetilde{x}_{\lambda_{n}}^{n},(f,\varphi)\left(\widetilde{x}_{\lambda_{n}}^{n}\right)\right)\right\}}}{1 + \widetilde{a}^{2}\left(\widetilde{x}_{\lambda_{n-1}}^{n},(f,\varphi)\left(\widetilde{x}_{\lambda_{n-1}}^{n}\right)\right) + \widetilde{a}^{2}\left(\widetilde{x}_{\lambda_{n}}^{n},(f,\varphi)\left(\widetilde{x}_{\lambda_{n}}^{n}\right)\right)\right)}} \xi(t) dt \\ &+ \gamma \int_{0}^{\left\{\widetilde{a}\left(\widetilde{x}_{\lambda_{n-1}}^{n-1},\widetilde{x}_{\lambda_{n}}^{n}\right)\right\}} \xi(t) dt \end{split}$$

$$= \alpha \int_{0}^{\left\{\frac{\widetilde{d}^{3}(\tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n}) + \widetilde{d}^{3}(\tilde{x}_{\lambda_{n}}^{n}, \tilde{x}_{\lambda_{n+1}}^{n+1})}{1 + \widetilde{d}^{2}(\tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n}) + \widetilde{d}^{2}(\tilde{x}_{\lambda_{n}}^{n}, \tilde{x}_{\lambda_{n+1}}^{n+1})} \xi(t) dt + \gamma \int_{0}^{\left\{\widetilde{d}(\tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n})\right\}} \xi(t) dt$$

$$\leq (\alpha + \gamma) \int_{0}^{\widetilde{d}(\tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n})} \xi(t) dt + (\alpha) \int_{0}^{\widetilde{d}(\tilde{x}_{\lambda_{n}}^{n}, \tilde{x}_{\lambda_{n+1}}^{n+1})} \xi(t) dt$$

So by the definition we can have

$$\psi \left[ \tilde{d} \left( \tilde{x}_{\lambda_{n}}^{n}, \tilde{x}_{\lambda_{n+1}}^{n+1} \right) \right] = \psi \left[ \tilde{d} \left( (f, \varphi) \left( \tilde{x}_{\lambda_{n-1}}^{n-1} \right), (f, \varphi) \left( \tilde{x}_{\lambda_{n}}^{n} \right) \right) \right]$$

$$\leq \psi \left[ \widetilde{\mathcal{M}} \left( \tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n} \right) \right] - \varphi \left[ \widetilde{\mathcal{M}} \left( \tilde{x}_{\lambda_{n-1}}^{n-1}, \tilde{x}_{\lambda_{n}}^{n} \right) \right]$$

$$\leq \psi \left[ (\alpha + \gamma) \int_0^{\widetilde{d}\left(\widetilde{x}_{\lambda_{n-1}}^{n-1}, \widetilde{x}_{\lambda_n}^n\right)} \xi(t) dt + (\alpha) \int_0^{\widetilde{d}\left(\widetilde{x}_{\lambda_n}^n, \widetilde{x}_{\lambda_{n+1}}^{n+1}\right)} \xi(t) dt \right] \\ - \varphi \left[ \widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda_{n-1}}^{n-1}, \widetilde{x}_{\lambda_n}^n\right) \right]$$

$$\psi\big[\tilde{d}\big(\tilde{x}^n_{\lambda_n},\tilde{x}^{n+1}_{\lambda_{n+1}}\big)\big] \leq \psi\big[(\alpha+\gamma)\int_0^{\tilde{d}\big(\tilde{x}^{n-1}_{\lambda_{n-1}},\tilde{x}^n_{\lambda_n}\big)}\xi(t)dt + (\alpha)\int_0^{\tilde{d}\big(\tilde{x}^n_{\lambda_n},\tilde{x}^{n+1}_{\lambda_{n+1}}\big)}\xi(t)dt\big]$$

Since  $\psi$  is non-decreasing, we have

$$\int_0^{\tilde{d}\left(\tilde{x}_{\lambda_n}^n,\tilde{x}_{\lambda_{n+1}}^{n+1}\right)} \xi(t)dt \leq (\alpha+\gamma) \int_0^{\tilde{d}\left(\tilde{x}_{\lambda_{n-1}}^{n},\tilde{x}_{\lambda_n}^n\right)} \xi(t)dt + (\alpha) \int_0^{\tilde{d}\left(\tilde{x}_{\lambda_n}^n,\tilde{x}_{\lambda_{n+1}}^{n+1}\right)} \xi(t)dt \\ \int_0^{\tilde{d}\left(\tilde{x}_{\lambda_n}^n,\tilde{x}_{\lambda_{n+1}}^{n+1}\right)} \xi(t)dt \leq \frac{(\alpha+\gamma)}{(1-\alpha)} \int_0^{\tilde{d}\left(\tilde{x}_{\lambda_{n-1}}^n,\tilde{x}_{\lambda_n}^{n+1}\right)} \xi(t)dt$$

$$\int_0^{\tilde{d}\left(\tilde{x}_{\lambda_n}^n,\tilde{x}_{\lambda_{n+1}}^{n+1}\right)} \xi(t)dt \leq s^n \int_0^{\tilde{d}\left(\tilde{x}_{\lambda_0}^0,\tilde{x}_{\lambda_1}^1\right)} \xi(t)dt, \text{ Where } s = \frac{\alpha + \gamma}{1 - \alpha}$$

Taking  $n \to \infty$ , we have

$$\lim_{n\to\infty} \tilde{d}\left(\tilde{x}_{\lambda_n}^n, \tilde{x}_{\lambda_{n+1}}^{n+1}\right) = 0(2.1.2)$$

Now, we will show that  $\{\tilde{x}_{\lambda_n}^n\}$  is a soft Cauchy sequence. Suppose that  $\{\tilde{x}_{\lambda_n}^n\}$  is not a Soft Cauchy sequence, which means that there is a constant  $\epsilon_0 > 0$  such that for each positive integer k, there are positive integer  $\lambda_{m(k)}$  and  $\lambda_{n(k)}$  with  $\lambda_{m(k)} > \lambda_{n(k)} > k$ :

ISSN: 2349-4689

$$\tilde{d}\left(\tilde{\boldsymbol{x}}_{\lambda_{m(k)}}^{m(k)}, \tilde{\boldsymbol{x}}_{\lambda_{n(k)}}^{n(k)}\right) \geq \epsilon_0, \tilde{d}\left(\tilde{\boldsymbol{x}}_{\lambda_{m(k)-1}}^{m(k)-1}, \tilde{\boldsymbol{x}}_{\lambda_{n(k)}}^{n(k)}\right) < \epsilon_0$$

By triangle inequality

$$\begin{split} \epsilon_0 & \leq \tilde{d}\left(\tilde{x}_{\lambda_m(k)}^{m(k)}, \tilde{x}_{\lambda_n(k)}^{n(k)}\right) \leq \tilde{d}\left(\tilde{x}_{\lambda_m(k)}^{m(k)}, \tilde{x}_{\lambda_m(k)-1}^{m(k)-1}\right) + \tilde{d}\left(\tilde{x}_{\lambda_m(k)-1}^{m(k)-1}, \tilde{x}_{\lambda_n(k)}^{n(k)}\right) \\ & < \tilde{d}\left(\tilde{x}_{\lambda_m(k)}^{m(k)}, \tilde{x}_{\lambda_m(k)-1}^{m(k)-1}\right) + \epsilon_0 \end{split}$$

Letting 
$$k \to \infty \lim_{k \to \infty} \tilde{d}\left(\tilde{x}_{\lambda_{m(k)}}^{m(k)}, \tilde{x}_{\lambda_{n(k)}}^{n(k)}\right) = \epsilon_0(2.1.3)$$

Similarly, we have

$$\lim_{n\to\infty} \tilde{d}\left(\tilde{x}_{\lambda_{m(k)}}^{m(k)}, \tilde{x}_{\lambda_{n(k)+1}}^{n(k)+1}\right) = \epsilon_0, \lim_{n\to\infty} \tilde{d}\left(\tilde{x}_{\lambda_{n(k)}}^{n(k)}, \tilde{x}_{\lambda_{m(k)+1}}^{m(k)+1}\right) = \epsilon_0$$

$$\lim_{n\to\infty} \tilde{d}\left(\tilde{x}_{\lambda_{m(k)+1}}^{m(k)+1}, \tilde{x}_{\lambda_{n(k)+1}}^{n(k)+1}\right) = \epsilon_0.$$

$$(2.1.4)$$

Putting  $\tilde{x}_{\lambda} = \tilde{x}_{\lambda_{m(k)}}^{m(k)}$  and  $\tilde{y}_{\mu} = \tilde{x}_{\lambda_{n(k)}}^{n(k)}$  in (2.1.1) we have

$$\begin{split} \widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda_{m(k)}}^{m(k)},\widetilde{x}_{\lambda_{n(k)}}^{n(k)}\right) &= \alpha \int_{0}^{\left\{\overline{a}^{3}\left(\widetilde{x}_{\lambda_{m(k)}}^{m(k)},(f,\varphi)\left(\widetilde{x}_{\lambda_{m(k)}}^{m(k)}\right)\right) + \widetilde{a}^{3}\left(\widetilde{x}_{\lambda_{n(k)}}^{n(k)},(f,\varphi)\left(\widetilde{x}_{\lambda_{n(k)}}^{n(k)}\right)\right)\right\}} \\ + \gamma \int_{0}^{\left\{d\left(\widetilde{x}_{\lambda_{m(k)}}^{m(k)},\widetilde{x}_{\lambda_{n(k)}}^{n(k)}\right)\right\}} \xi(t)dt \end{split}$$

$$= \alpha \int_{0}^{\left\{ \overline{d} \left( \overline{x}_{\lambda_{m(k)}}^{m(k)}, \overline{x}_{\lambda_{m(k)+1}}^{m(k)+1} \right) + \overline{d}^{3} \left( \overline{x}_{\lambda_{n(k)}}^{n(k)}, \overline{x}_{\lambda_{n(k)+1}}^{n(k)+1} \right) \right\}} \xi(t) dt \\ + \gamma \int_{0}^{\left\{ \overline{d} \left( \overline{x}_{\lambda_{m(k)}}^{m(k)}, \overline{x}_{\lambda_{n(k)}}^{n(k)}, \overline{x}_{\lambda_{n(k)}}^{n(k)} \right) \right\}} \xi(t) dt$$

Letting  $k \to \infty$  and using above equations we have

$$\begin{split} \lim_{k \to \infty} \widetilde{\mathcal{M}} \left( \widetilde{x}_{\lambda_{m(k)}}^{m(k)}, \widetilde{x}_{\lambda_{n(k)}}^{n(k)} \right) &= (\gamma) \epsilon_0 \dots (2.1.5) \\ \psi \left[ \widetilde{d} \left( \widetilde{x}_{\lambda_{m(k)+1}}^{m(k)+1}, \widetilde{x}_{\lambda_{n(k)+1}}^{n(k)+1} \right) \right] &= \psi \left[ \widetilde{d} \left( (f, \varphi) \left( \widetilde{x}_{\lambda_{m(k)}}^{m(k)} \right), (f, \varphi) \left( \widetilde{x}_{\lambda_{n(k)}}^{n(k)} \right) \right) \right] \\ &\leq \psi \left[ \widetilde{\mathcal{M}} \left( \widetilde{x}_{\lambda_{m(k)}}^{m(k)}, \widetilde{x}_{\lambda_{n(k)}}^{n(k)} \right) \right] - \varphi \left[ \widetilde{\mathcal{M}} \left( \widetilde{x}_{\lambda_{m(k)}}^{m(k)}, \widetilde{x}_{\lambda_{n(k)}}^{n(k)} \right) \right] \end{split}$$

Taking  $k \to \infty$ , and the continuity of  $\psi$  and  $\varphi$ , we have

$$\psi[\epsilon_0] \le \psi[(\gamma)\epsilon_0] - \varphi[(\gamma)\epsilon_0]$$
  
$$\le \psi[\epsilon_0] - \varphi[(\gamma)\epsilon_0]$$

This leads to  $\varphi[(\gamma)\epsilon_0] = 0$ , and property of  $\varphi$  we get  $\epsilon_0 = 0$ .

This is a contradiction. Thus  $\{\tilde{x}_{\lambda_n}^n\}$  is a soft Cauchy sequence in  $\tilde{X}$ , which is complete. Thus, there is  $\tilde{x}_{\lambda}^* \in \tilde{X}$  such that  $\tilde{x}_{\lambda_n}^n \to \tilde{x}_{\lambda}^*$ ,  $n \to \infty$ .

Taking  $\tilde{x}_{\lambda} = \tilde{x}_{\lambda_n}^n$  and  $\tilde{y}_{\mu} = \tilde{x}_{\lambda}^*$  in (4.1.2) we have

$$\widetilde{\mathcal{M}}(\widetilde{x}_{\lambda_{n}}^{n}, \widetilde{x}_{\lambda}^{*}) = \alpha \int_{0}^{\left\{\frac{\widetilde{d}^{3}\left(\widetilde{x}_{\lambda_{n}}^{n}, (f, \varphi)\left(\widetilde{x}_{\lambda_{n}}^{n}\right)\right) + \widetilde{d}^{3}\left(\widetilde{x}_{\lambda}^{*}, (f, \varphi)\left(\widetilde{x}_{\lambda}^{*}\right)\right)\right\}} \left\{\xi(t)dt$$

+ 
$$\gamma \int_0^{\left\{\tilde{d}\left(\tilde{x}_{\lambda_n}^n, \tilde{x}_{\lambda}^*\right)\right\}} \xi(t) dt \dots (2.1.6)$$

Taking  $n \to \infty$ 

$$\begin{split} &\lim_{n\to\infty} \widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda_n}^n, \widetilde{x}_{\lambda}^*\right) \leq (\alpha) \left\{ \widetilde{d}\left(\widetilde{x}_{\lambda}^*, (f, \varphi)(\widetilde{x}_{\lambda}^*)\right) \right\} \\ \psi\left[\widetilde{d}\left(\widetilde{x}_{\lambda_{n+1}}^{n+1}, (f, \varphi)(\widetilde{x}_{\lambda}^*)\right) \right] &= \psi\left[\widetilde{d}\left((f, \varphi)\left(\widetilde{x}_{\lambda_n}^n\right), (f, \varphi)(\widetilde{x}_{\lambda}^*)\right) \right] \\ &\leq \psi\left[\widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda_n}^n, \widetilde{x}_{\lambda}^*\right) \right] - \varphi\left[\widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda_n}^n, \widetilde{x}_{\lambda}^*\right) \right] \end{split}$$

$$\begin{split} \psi \big[ \tilde{d} \big( \tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*) \big) \big] &\leq \psi \big[ (\alpha) \int_0^{\left\{ \tilde{d} \left( \tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*) \right) \right\}} \xi(t) dt \big] - \\ & - \varphi \big[ (\alpha) \big] \int_0^{\left\{ \tilde{d} \left( \tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*) \right) \right\}} \xi(t) dt \end{split}$$

$$\psi\big[\tilde{d}\big(\tilde{x}_{\lambda}^*,(f,\varphi)(\tilde{x}_{\lambda}^*)\big)\big] \leq \psi\int_0^{\tilde{d}\big(\tilde{x}_{\lambda}^*,(f,\varphi)(\tilde{x}_{\lambda}^*)\big)} \xi(t)dt - \varphi[\alpha\int_0^{\left\{\tilde{d}\big(\tilde{x}_{\lambda}^*,(f,\varphi)(\tilde{x}_{\lambda}^*)\big)\right\}} \xi(t)dt]$$

Which implies  $\varphi[(\alpha)\{\tilde{d}(\tilde{x}_{\lambda}^*,(f,\varphi)(\tilde{x}_{\lambda}^*))\}]=0$ ,

So 
$$\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) = 0$$
, that is  $(f, \varphi)(\tilde{x}_{\lambda}^*) = \tilde{x}_{\lambda}^*$ .

**Uniqueness:**Let  $\tilde{y}_{\mu}^*$  is another fixed point of  $(f, \varphi)$  in  $\tilde{X}$  such that  $\tilde{x}_{\lambda}^* \neq \tilde{y}_{\mu}^*$ , then

Putting  $\tilde{x}_{\lambda} = \tilde{x}_{\lambda}^*$  and  $\tilde{y}_{\mu} = \tilde{y}_{\lambda}^*$ 

$$\begin{split} \widetilde{\mathcal{M}}(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}) = & \alpha \int_{0}^{\left\{\frac{\widetilde{a}^{3}\left(\widetilde{x}_{\lambda}^{*},(f,\varphi)\left(\widetilde{x}_{\lambda}^{*}\right)\right) + \widetilde{a}^{3}\left(\widetilde{y}_{\lambda}^{*},(f,\varphi)\left(\widetilde{y}_{\lambda}^{*}\right)\right)\right\}}{\{t^{2}\left(\widetilde{y}_{\lambda}^{*},(f,\varphi)\left(\widetilde{y}_{\lambda}^{*}\right)\right)\}}} \xi(t)dt + \gamma \int_{0}^{\left\{\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right\}} \xi(t)dt \\ & \psi \left[\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] = \psi \left[\widetilde{d}\left((f,\varphi)\left(\widetilde{x}_{\lambda}^{*}\right),(f,\varphi)\left(\widetilde{y}_{\lambda}^{*}\right)\right)\right] \\ & \leq \psi \left[\widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] - \varphi \left[\widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] \\ & \leq \psi \left[(\gamma)\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] - \varphi \left[(\gamma)\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] \\ & \psi \left[\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] \leq \psi \left[\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] - \varphi \left[(\gamma)\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right] \end{split}$$

$$\operatorname{So}\varphi[(\gamma)\tilde{d}(\tilde{x}_{\lambda}^*,\tilde{y}_{\lambda}^*)] = 0$$
, thus  $\tilde{d}(\tilde{x}_{\lambda}^*,\tilde{y}_{\lambda}^*) = 0$ , that is  $\tilde{x}_{\lambda}^* = \tilde{y}_{\lambda}^*$ .

Hence fixed point of  $(f, \varphi)$  is unique.

**Corollary 4.2:** Let  $(\tilde{X}, \tilde{d}, E)$  be a soft complete metric space. Suppose the soft mapping  $(f, \varphi) : (\tilde{X}, \tilde{d}, E) \to (\tilde{X}, \tilde{d}, E)$  satisfies the following condition:

$$\psi\left[\tilde{d}\left((f,\varphi)(\tilde{x}_{\lambda}),(f,\varphi)(\tilde{y}_{\mu})\right)\right] \leq \psi\left[\tilde{\mathcal{M}}\left(\tilde{x}_{\lambda},\tilde{y}_{\mu}\right)\right] - \varphi\left[\tilde{\mathcal{M}}\left(\tilde{x}_{\lambda},\tilde{y}_{\mu}\right)\right](2.2.1)$$

For each  $\tilde{x}_{\lambda}$ ,  $\tilde{y}_{\mu} \in \tilde{X}$ ,  $\tilde{x}_{\lambda} \neq \tilde{y}_{\mu}$ , where  $\psi$ ,  $\varphi$  are altering distance functions, and

$$\begin{split} \widetilde{\mathcal{M}}\left(\widetilde{x}_{\lambda},\widetilde{y}_{\mu}\right) &= \alpha \int_{0}^{\left\{\frac{\widetilde{d}^{3}\left(\widetilde{x}_{\lambda}^{*},(f,\varphi)\left(\widetilde{x}_{\lambda}^{*}\right)\right) + \widetilde{d}^{3}\left(\widetilde{y}_{\lambda}^{*},(f,\varphi)\left(\widetilde{y}_{\lambda}^{*}\right)\right)\right\}}{1 + \widetilde{d}^{2}\left(\widetilde{x}_{\lambda}^{*},(f,\varphi)\left(\widetilde{x}_{\lambda}^{*}\right)\right) + \widetilde{d}^{2}\left(\widetilde{y}_{\lambda}^{*},(f,\varphi)\left(\widetilde{y}_{\lambda}^{*}\right)\right)\right\}}} \xi(t)dt + \gamma \int_{0}^{\left\{\widetilde{d}\left(\widetilde{x}_{\lambda}^{*},\widetilde{y}_{\lambda}^{*}\right)\right\}} \xi(t)dt \\ &+ \delta \int_{0}^{\left\{\widetilde{d}\left(\widetilde{x}_{\lambda},(f,\varphi)\left(\widetilde{x}_{\lambda}\right)\right) + \widetilde{d}\left(\widetilde{y}_{\mu},(f,\varphi)\left(\widetilde{y}_{\mu}\right)\right)\right\}}} \xi(t)dt \\ &+ \eta \int_{0}^{\left\{\widetilde{d}\left(\widetilde{x}_{\lambda},(f,\varphi)\left(\widetilde{y}_{\mu}\right)\right) + \widetilde{d}\left(\widetilde{y}_{\mu},(f,\varphi)\left(\widetilde{x}_{\lambda}\right)\right)\right\}}} \xi(t)dt \end{split}$$

Where  $\alpha, \gamma, \delta, \eta > 0$  and  $2\alpha + \gamma + 2\delta + 2\eta < 1$  is a soft constant. Then  $(f, \varphi)$  has a unique soft fixed point in  $\widetilde{X}$ . www.ijspr.com

**Proof:** It can be proved easily as previous theorem

#### **REFERENCES**

ISSN: 2349-4689

- [1] Ali, M. I., Feng, F., Liu, X., Min, W. K., Shabir, M., "On some new operations in soft set theory", Comput. Math. Appl. 49(2005) 1547-1553.
- [2] Banach, S. "Surlesoperation dans les ensembles abstraits et leur application aux equationsintegrals" Fund. Math. 3(1922) 133-181.
- [3] BranciariA., A fixed point theorem for mappings satisfying a general contractive condition of integeral type, Int. J.Math. Sci., 29(9) (2002),531-536.
- [4] Chen, D., "The parameterization reduction of soft sets and its applications", Comput. Math. Appl. 49 (2005) 757-763.
- [5] Das, S., and Samanta, S. K., "Soft metric", Annals of Fuzzy Mathematics and Informatics, 6(1) (2013) 77-94.
- [6] Das, S., and Samanta, S. K., "On soft metric spaces", J. Fuzzy Math, accepted.
- [7] Gunduz, C., (Aras), Sonmez, A., Çakallı, H., "On Soft Mappings", arXiv:1305.4545v1 [math.GM], 16 May 2013.
- [8] Hussain, S.and Ahmad, B., "Some properties of soft topological spaces", Computers and Math. with Applications, 62(2011), 4058-4067.
- [9] Jain, S., Bhardwaj, R., "Some fixed point theorems for new rational expansion in complete metric space", South Asian Journal of mathematics, (2012) vol. 2(4), 46-49.
- [10] Khan, M. S., Swalech, M. and Sessa, S., "Fixed point theorms by altering distance between the points", Bull. Austral Math. Soc., 30 (1984) 1-9.
- [11] Maji, P. K., Roy, A. R., Biswas, R., "An application of soft sets in a decision making problem", Comput. Math. Appl.44 (2002) 1077-1083.
- [12] Maji, P. K., Roy, A. R., Biswas, R., "Soft set theory", Comput. Math. Appl.45 (2003) 555-562.
- [13] Majumdar, P., and Samanta, S. K., "On soft mappings", Comput. Math. Appl. 60 (2010) 2666-2672.
- [14] Molodtsov, D., "Soft set-theory-first results", Comput. Math. Appl. 37(1999) 19-31.(11)
- [15] Shabir, M., and Naz, M., "On soft topological spaces", Comput. Math.Appl. 61(2011) 1786-1799.