
 ISSN: 2349 - 4689 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)
Volume-05, Number -02, 2014

A Study of Internal Parallel Sorting Algorithms
Mohameed Kareemulla Dr. M. Punithavalli, Dr. Subramanian

Research Scholar, Manonmaniam Sundaranar University, Tamil Nadu, India.
Dean, Sri Ramakrishna College of Arts & Science for Women, Tamil Nadu, India.

Dean/Director, Indian Institute of Research & Management, Tamil Nadu, India.

Abstract - An ideal parallel sorting algorithm which uses P
processors would reduce this time by at most a factor of P, simply
because any deterministic parallel algorithm can be simulated by a
single processor with a time cost of P. This leads us to the
observation that an ideal comparison-based parallel sorting
algorithm would take time NPlogN. Of course, this totally ignores
the constant computational factors, communication costs and the
memory requirements of the algorithm. All these factors are very
important in the design of a parallel sorting algorithm.

Keywords: Parallel Processor, Parallel Shorting algorithm,
Communication Cost, Memory requirement

II. INTRODUCTION

Parallel Sorting algorithms are focused to choose p-1
partitioning elements so that the final p sorted files are of
roughly equal size, i.e., the load balance is good. We used two
sampling techniques to select a sample of splitters: regular
sampling and random sampling. Regular sampling selects
splitters with equal intervals, while random sampling selects a
certain number of pivots at random.

1. Main Algorithm

Main approach is derives from the work by Shi et al [14],
which is an internal memory parallel sorting by regular
sampling. researchers also applied the random sampling
technique introduced by Quinn. In this thesis we consider the
problem of external memory parallel sorting in a distributed
memory system. In this multiprocessor architecture, each
processor has its own memory and an independent disk
(precisely, a big file), and all communications among
processors must happen through an interconnection network.

1. Have a data file with N integer numbers created with a
data generator. Each processor holds a disk file with N/p
unsorted records. At the termination of the sorting
algorithm, files have been partitioned, redistributed and
merged into approximately equal sized non-overlapping
sorted files, which must again be on disks, one at each
processor. In more details, our algorithm can be
described as follows:

2. /* Input: original file list F - f1, f2... fp (total size is N, p
is the number of processors). Processor Pi holds N/p
unsorted data items stored in file fi (1∑i∑p). Output:
sorted file list F’- f’1, f’2..., f’p, where all records in f’i
are less than or equal to those in f’i+1(1 ≤ I ≤ p -1).*/

3. Each processor Pi samples its disk-resident file fi: it reads
all data elements block by block (B = 128K) and selects
p¡1 pivots at equal intervals (or at random) from each
block to form the set of splitters Si. So the size of Si is N
(p¡1)/Bp.

4. The coordinate processor P1 gathers all unsorted samples
Si from all other processors. P1 then sorts the set of these
samples to form a regular sample S0 with size N (p¡1)/B.
Then the final sample S with p- 1 element at equal
intervals are selected from the regular sample S0, and is
broadcasted to all other processors.

5. Each processor Pi reads and sorts data items block by
block from local file fi, and redistributes the records to
the appropriate processors using the final sample S.
When a processor’s memory has been filled with
incoming records, the processor sorts these records,
writes the sorted run onto disk as a temporary file, and
continues reading incoming records.

6. In parallel, the processors merge the sorted runs
(precisely, temporary files) and back onto the disk as the
final sorted file f’i. Note that during the second step, if
we select pivots by regular sampling, then each data
block has to be sorted first. This additional sorting time
can be saved by an alternative way: write these sorted
blocks into local temporary files, and in the third step,
each processor reads these files (sorted blocks), not
unsorted data block of the original data file. This means
each data block of the original file has to be sorted only
once anyway.

III. PARALLEL SORTING ALGORITHMS

Parallel programming is dealing with nondeterminism. For
many computational problems, there is no inherent
nondeterminism in the problem statement, and indeed a serial
program would be deterministic—the nondeterminism arises

www.ijspr.com IJSPR | 19

 ISSN: 2349 - 4689 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)
Volume-05, Number -02, 2014

solely due to the parallel program and/or due to the parallel
machine and its runtime environment. There is disagreement
as to what degree of determinism is desired (worth paying
for). Popular options include:

• Data-race free:
Which eliminate a particularly problematic type of
nondeterminism: the data race. Synchronization Constructs
such as locks or atomic transactions protect ordinary accesses
to shared data, but nondeterminism among such constructs
(e.g., the order of lock acquires) can lead to considerable
nondeterminism in the execution.

• Determinate(or External determinism):
This requires that the program always produces the same
output when run on the same input. Program executions for a
given input may vary widely, as long as the program
“converges” to the same output each time.

• Internal determinism:
In which key aspects of intermediate steps of the program are
also deterministic, as discussed in this thesis.

Nested parallelism:

Nested-parallel computations achieve parallelism through the
nested instantiation of fork-join constructs, such as parallel
loops, parallel map, par begin/par end, parallel regions, and
spawn/sync. More formally, nested parallel computations can
be defined inductively in terms of the composition of
sequential and parallel components. At the base case a strand
is a sequential computation. A task is then a sequential
composition of strands and parallel blocks, where a parallel
block is a parallel composition of tasks starting with a fork
and ending with a join.

Parallel programming is dealing with nondeterminism. For
many computational problems, there is no inherent
nondeterminism in the problem statement, and indeed a serial
program would be deterministic—the nondeterminism arises
solely due to the parallel program and/or due to the parallel
machine and its runtime environment. There is disagreement
as to what degree of determinism is desired (worth paying
for). Popular options include:

• Data-race free:
Which eliminate a particularly problematic type of
nondeterminism: the data race. Synchronization Constructs
such as locks or atomic transactions protect ordinary accesses
to shared data, but nondeterminism among such constructs

(e.g., the order of lock acquires) can lead to considerable
nondeterminism in the execution.

• Determinate(or External determinism):
This requires that the program always produces the same
output when run on the same input. Program executions for a
given input may vary widely, as long as the program
“converges” to the same output each time.

• Internal determinism:
In which key aspects of intermediate steps of the program are
also deterministic, as discussed in this thesis.

Nested parallelism:

Nested-parallel computations achieve parallelism through the
nested instantiation of fork-join constructs, such as parallel
loops, parallel map, par begin/par end, parallel regions, and
spawn/sync. More formally, nested parallel computations can
be defined inductively in terms of the composition of
sequential and parallel components. At the base case a strand
is a sequential computation. A task is then a sequential
composition of strands and parallel blocks, where a parallel
block is a parallel composition of tasks starting with a fork
and ending with a join.

Fig.1 A Sample Nested Parallel Program

Here, the in parallel keyword means that the following two f:
: :g blocks of code may execute in parallel. Atomic Add(x; v)
atomically updates x to x :=x + v and returns the new value of
x.

The diamonds, squares, and circles denote forks, joins, and
data operations, respectively. Nodes are numbered by line
number, as a short hand for operations such as Atomic Add(x;

1 x:=0

2 in parallel do

3 { r3:=Atomic Add(x,1) }

4 { r4:= Atomic Add(x,10)

5 In parallel do

6 { r6:= Atomic Add(x, 100)

}

7 { r7:= Atomic Add(x, 1000)

}

www.ijspr.com IJSPR | 20

 ISSN: 2349 - 4689 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)
Volume-05, Number -02, 2014

1). The left trace corresponds to the interleaving/schedule 1;
2; 3; 4; 5; 6; 7; 8, whereas the right trace corresponds to 1; 2;
4; 5; 7; 6; 3; 8. Because the intermediate return values differ,
the program is not internally deterministic. It is, however,
externally deterministic as the output is always the same. If
Atomic Add did not return a value, however, then the
program would be internally deterministic.

A sorting algorithm is an algorithm that puts elements of a list
in a certain order. The most-used orders are numerical order
and lexicographical order. Efficient sorting is important for
optimizing the use of other algorithms (such as search and
merge algorithms) which require input data to be in sorted
lists; it is also often useful for canonicalizing data and for
producing human-readable output. More formally, the output
must satisfy two conditions:

1. The output is an increasing order (each element is no
smaller than the previous element according to the
desired total order)

2. The output is a permutation (reordering) of the input.

Since the dawn of computing, the sorting problem has
attracted a great deal of research, perhaps due to the
complexity of solving it efficiently despite its simple, familiar
statement. For example, bubble sort was analyzed as early as
1956. Although many consider it a solved problem, useful
new sorting algorithms are still being invented (for example,
library sort was first published in 2006).

Sorting algorithms are prevalent in introductory computer
science classes, where the abundance of algorithms for the
problem provides a gentle introduction to a variety of core
algorithm concepts, such as big O notation, divide and
conquer algorithms, data structures, randomized algorithms,
best, worst and average case analysis, time-space tradeoffs,
and upper and lower bounds.

IV. PERFORMANCE OF PARALLEL ALGORITHMS

Depending of the execution time of the parallel programs
(measured with get time of day) only on the number of nodes
along horizontal and vertical sides of a mesh and on the
number of processors; the other parameters are fixed.

Fig.2 Execution time of sequential and parallel program on
networked RS63; meshes with 2304 nodes; algorithm I.

Fig.3 Execution time of parallel program on networked RS63
vs. number of processes; mesh: 256 x 9 nodes; algorithm I.

Estimating the Speedup

Speedup is defined by the following formula:

 (22)

Where:

• p is the number of processors

• is the execution time of the sequential algorithm

• is the execution time of the parallel algorithm
with p processors

www.ijspr.com IJSPR | 21

 ISSN: 2349 - 4689 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)
Volume-05, Number -02, 2014

Linear speedup or ideal speedup is obtained when

. When running an algorithm with linear speedup,
doubling the number of processors doubles the speed. As this
is ideal, it is considered very good scalability.

Efficiency is a performance metric defined as

. (23)

It is a value, typically between zero and one, estimating how
well-utilized the processors are in solving the problem,
compared to how much effort is wasted in communication
and synchronization. Algorithms with linear speedup and
algorithms running on a single processor have an efficiency of
1, while many difficult-to-parallelize algorithms have

efficiency such as that approaches zero as the number
of processors increases.

In engineering contexts, efficiency is more often used for
graphs than speedup, since

• all of the area in the graph is useful (whereas in a
speedup curve 1/2 of the space is wasted)

• it is easy to see how well parallelization is working
• there is no need to plot a "perfect speedup" line

In marketing contexts, speedup curves are more often used
largely because they go up and to the right and thus appear
better to the less-informed. An important characteristic of any
parallel algorithm is how much faster the algorithm performs
than an algorithm on a serial machine.

The first choice gives that which is called the parallel
efficiency of the algorithm. This is a measure of the degree to
which the algorithm can take advantage of the parallel
resources available to it. The second choice gives the fairest
picture of the effectiveness of the algorithm itself. It measures
the advantage to be gained by using a parallel approach to the
problem. Ideally a parallel algorithm running on P nodes
should complete a task P times faster than the best serial
algorithm running on a single node of the same machine. It is
even conceivable, and sometimes realizable, that caching
effects could give a speedup of more than P.

V. CONCLUSION

It is described that the four-step approach to parallel
algorithm design in which we start with a problem
specification and proceed as follows:

• First partition a problem into many small pieces, or
tasks. This partitioning can be achieved by using
either domain or functional decomposition
techniques.

• Next, to organize the communication required to
obtain data required for task execution. It can
distinguish between local and global, static and
dynamic, structured and unstructured, and
synchronous and asynchronous communication
structures.

• Then, using agglomeration to decrease
communication and development costs, while
maintaining flexibility if possible.

• Finally, utilizing the map tasks to processors,
typically with the goal of minimizing total execution
time. Load balancing or task scheduling techniques
can be used to improve mapping quality.

REFERENCES

[1] AGGARWAL, A. AND PLAXTON, C. 1993. Optimal
parallel sorting in multi-level storage. Technical Report
CS-TR-93-22, University of Texas at Austin. AJTAI, M.,
KOLMOS, J., AND SZERMEREDI, E. 1983. 3, 1 – 19.

[2] AKL, S. G. 1985. Parallel Sorting Algorithms. Academic
Press, Toronto. (p. 47) BATCHER, K. E. 1968. Sorting
networks and their applications. In Proc. AFIPS Spring
Joint Computer Conference, Volume 32 (1968), pp. 307 –
314) BELL, T., CLEARY, J., AND WITTEN, I. 1990.
Text Compression. Prentice Hall.

[3] BLELLOCH, G. E., LEISERSON, C. E., MAGGS, B. M.,
PLAXTON, C. G., SMITH, S. J., AND ZAGHA, M. 1991.
A comparison of sorting algorithms for the connection
machine CM-2. In Proc. Symposium on Parallel
Algorithms and Architectures (Hilton Head, SC, July
1991).

[4] BURROWS, M. AND WHEELER, D. 1994. A block-
sorting lossless data compression algorithm. Technical
Report SRC Research Report 124 (May), Digital Systems
Research Center.

www.ijspr.com IJSPR | 22

 ISSN: 2349 - 4689 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)
Volume-05, Number -02, 2014

[5] CALLAGHAN, B. 1998. Network file system version 4.
http://www.ietf.org/html.charters/nfsv4-charter.html.

[6] ELLIS, J. AND MARKOV, M. 1998. A fast, in-place,
stable merge algorithm. ftp://csr.uvic.ca/pub/jellis/.

[7] FENWICK, P. 1996. Block sorting text compression. In
Proc. 19th Australasian Computer Science Conference,
Melbourne, Australia (January 1996).

[8] FOX, G. C., JOHNSON, M. A., LYZENGA, G. A.,
OTTO, S. W., SALMON, J. K., AND WALKER, D. W.
1988. Solving Problems on Concurrent Processors,
Volume 1. Prentice-Hall.

[9] GAILLY, J. AND ADLER, M. 1998. zlib.
http://www.cdrom.com/pub/infozip/zlib/.

[10] GNU. 1998. The GNU thesis. http://www.gnu.org.

[11] GUTENBERG. 1998. Thesis gutenberg.
http://www.gutenberg.net.

[12] HELMAN, D., BADER, D., AND J `AJ `A, J. 1996. A
randomized parallel sorting algorithm with an
experimental study. Technical Report CS-TR-3669,
Institute for Advanced Computer Studies, University of
Maryland.

[13] HOFF, A. AND PAYNE, J. 1997. Generic diff format
specification. http://www.w3.org/TR/NOTE-gdiff-
19970825.html.

[14] HUANG, B. AND LANGSTON, M. A. 1988. Practical in-
place merging. Communications of the ACM 31, 348 –
352.

[15] ISHIHATA, H., HORIE, T., INANO, S., SHIMIZU, T.,
KATO, S., AND IKESAKA, M. 1991. Third generation
message passing computer AP1000. In International
Symposium on Supercomputing (November 1991), pp. 45
– 55.

[16] ISHIHATA, H., HORIE, T., AND SHIMIZU, T. 1993.
Architecture for the AP1000 highly parallel computer.
Fujitsu Sci. Tech. J. 29, 6 – 14.

[17] KARP, R. AND RABIN, M. 1987. Efficient randomized
pattern-matching algorithms. IBM J. Research and
Development 31, 249 – 260.

www.ijspr.com IJSPR | 23

