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Abstract - 2 × 2 MIMO profiles included in Mobile Wi-MAX 
specifications are Alamouti’s STC (space-time code) for transmit 
diversity and spatial multiplexing (SM). Alamouti’s STC has full 
diversity and the SM has full rate, but neither of these has both of 
desired features as required. Golden code provides full rate and 
full diversity. It has a high decoding complexity. The issue 
decoding complexity was included in the STC design criteria, and 
variant STCs were proposed. In this paper, a high-rate full-
diversity 2 × 2 STC design leading to lower complexity of the 
optimum detector compared to the Golden code with only a slight 
performance loss. We provided the general optimized form of this 
STC and show that this scheme achieves the diversity multiplexing 
for different QAM signal constellations.  

Keywords - STC, MIMO, Wi-MAX.              

I. INTRODUCTION 

Multiple-Input Multiple-Output (MIMO) concepts have been 
under development for many years for wireless systems. 
Digital communication using MIMO is emerging as one of 
the most promising research areas in wireless 
communications. The MIMO approach can also be used for 
spatial diversity rather than multiplexing to benefit the Bit 
Error Rate (BER) performance of the wireless 
communication channel. A full-rate full-diversity 2 × 2 STC 
design leading to substantially lower complexity of the 
optimum detector compared to the Golden code with only a 
slight performance loss.  

At the system level, careful design of MIMO signal 
processing and coding algorithms can help increase coverage 
.Today, MIMO wireless is widely recognized as one of three 
or four key technologies in coming high-speed high-
spectrum efficiency wireless networks (4G, and to some 
extent 3G).  

Wireless system designers are facing a number of challenges. 
Major of them are limited availability of the radio frequency 
spectrum and space, time varying wireless channel. Further, 
there is an increasing demand for higher data rates, better 
QOS(Quality of Service) and higher network capacity. In 

recent years, MIMO systems have come as promising 
technology in these limits. Effective technique to provide 
reliable communication over a wireless channel is diversity 
which attempts to provide the receiver with independently 
faded copies of the transmitted signal with expectations to at 
least one of these replicas will be received correctly.  

One of the main advantages of MIMO systems is the 
substantial increase in the channel capacity, higher data 
throughputs. Another advantage of MIMO systems is low 
symbol error rates. These advantages are made without any 
expansion in the bandwidth or increase in the transmit 
power. As information is transmitted through different paths, 
a MIMO system utilizes transmitter and receiver diversity 
techniques, hence maintaining reliable communications.  

II. FRFD 2X2 STC CODE DESIGN CRITERIA 

A finite set of complex matrices is a STBC. A n×n linear 
STBC is obtained starting from an n × n matrix consisting of 
arbitrary linear combinations of m complex variables and 
conjugates of those symbols, and it leads to  variables take 
values from complex constellations. The rate of such a code 
is k/n complex symbols per channel use. We consider 
Rayleigh quasi-static flat fading MIMO channel with full 
channel state information (CSI) at the receiver but not at the 
transmitter. For 2×2 MIMO transmission, we have 

  Y = HS + N            (2.1) 

Code rate: If there are k independent information symbols in 
the codeword which are transmitted over T channel uses, 
then, for an nt×nr MIMO system, the code rate is defined as 
k/T symbols per channel. If k = nminT , where nmin = 
min(nt,nr), then the STBC is said to have full rate. 

Considering ML decoding, the decoding metric that is to be 
minimized over all possible values of code words S is given 
by 

M(S) = ||Y − HS||2     (2.2) 
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for, number of symbols = 4, Time slots =2, (4/2) = 2. 
Symbols for each channel used are 2 and with 2 transmit, 2 
receive antennas nmin = min(nt,nr) = 2 ,shows full rate.  

Decoding complexity: The ML decoding complexity 
(number of metrics) is given by the minimum number of 
symbols that need to be jointly decoded in minimizing the 
decoding metric. This can never be greater than k, in which 
case, the decoding complexity is said to be of the order of 
Mk. If the decoding complexity is lesser than Mk, the code is 
said to simplified complex decoding. If, constellation size is 
16 then metrics computed are (16^4) = 256. 

III. PROPOSED LOW COMPLEXITY FRFD STC 

I present my approach to full-rate 2x2 STC design makes to 
maximize both the diversity gain while leading to an 
optimum detector of reduced complexity depends on 
constallation. More specifically, the proposed STC is a high-
rate, full-diversity 2x2 space-time code whose optimum 
receiver has a complexity that is only proportional to M2, 
where M is the size of the signal constellation. The number 
of Euclidean distance computations(calculations) in the 
optimum detector is reduced to 162= 256 for a 16-QAM 
signal constellation and to 642 = 4,096 for a 64-QAM signal 
group. By comparing these information to those connected to 
the Golden code (or Matrix C), it becomes obvious that this 
code makes the implementation of full-rate, full-diversity 
2x2 STCs with optimum receiver practical. We currently 
present a general picture of the proposed code. A group of 4 
data symbols (s1 , s2 , s3 , s4 ) in the proposed code design is 
transmitted as follows: 

 Xnew = �𝑎𝑎𝑠𝑠1  +  𝑏𝑏𝑠𝑠3 −𝑐𝑐𝑠𝑠2
∗ − 𝑑𝑑𝑠𝑠4

∗

𝑎𝑎𝑠𝑠2  +  𝑏𝑏𝑠𝑠4 𝑐𝑐𝑠𝑠1
∗ + 𝑑𝑑𝑠𝑠3

∗ �         (3.5) 

where a, b, c, and d are parameters (complex valued design 
parameters) and the star symbol indicates  complex 
conjugate. 

In this matrix representation, the first column represents the 
symbol combinations transmitted during a first symbol 
interval t1 and the second column represents the symbol 
combinations transmitted during a second symbol interval t2. 
The initial row of the matrix give the sign combinations 
transmitted from the first Tx antenna, and second row of the 
matrix gives the symbol combinations transmitted from the 
second Tx antenna. In other words, as1 + bs3 is transmitted 
from Tx antenna 1 during the first symbol interval t1, as2 + 
bs4 is transmitted from Tx antenna 2 during the first symbol 
interval t1, - cs2* – ds4* is transmitted from Tx antenna 1 
during the second symbol interval t2, and cs1* + ds3* is 

transmitted from Tx antenna 2 during the second symbol 
interval t2. 

On the first receive antenna, the two signals received at the 
first and second symbol intervals are: 

r1 = h11 (as1 + bs3 )+ h12 (as2 + bs4 )+n1,    (3.6) 

r2 = h11 (– cs2* – ds4* )+ h12 (cs1* + ds3* )+n2,         (3.7) 

Similarly, we have on the second Rx antenna: 

r3=h21 (as1+bs3)+ h22 (as2+bs4)+n3,                           (3.8) 

r4=h21 (–cs2*–ds4*)+h22 (cs1*+ds3*)+n4.                (3.9) 

where ni, for i = 1, ....,4, are the additive noise terms. 

The maximum likelihood (ML) detector makes an exhaustive 
search over all possible values of the transmitted symbols 
and decides in favor of the quadruplet (S1,S2,S3,S4) which 
minimizes the Euclidean distance: 

D(s1,s2 ,s3 ,s4) = {│r1  – h11(as1+bs3) –h12 (as2 
+bs4)│2+│r2 – h11(–cs2* – ds4*) – h12(cs1*+ds3*)│2+
    │r3 – h21(as1 + bs3) –h22 (as2 + 
bs4)│2+│r4 – h21(–cs2* – ds4*) – h22 (cs1*+ ds3*)│2} 
(3.10) 

An exhaustive search clearly involves the computation of M4 
metrics and M4-1 comparisons, which is excessive for the 
16-QAM and 64-QAM signal constellations. But the 
proposed STC design lends itself to a low-complexity 
implementation of the ML detector as we now show. 

From the received signal samples (r1, r2, r3, r4), let us 
compute w1, w2, w3, w4 signals: 

From those signals, we next compute the signal Y1 given by: 

y1 = (h11*w1 + h21* w3 )/a + (h12 w2* + h22 w4* )/c* 

     = (│h11│2 +│h12│2 +│h21│2 +│h22│2 )s1 + ɳ1       
(3.11) 

with ɳ1 = (h11*n1 + h21*n3 )/a  + (h12 n2* + h22 n4* )/c* 

It can be seen that the signal y1 has no terms involving 
symbol s2, and the coefficient of the term in s1 clearly 
indicates that estimation of s1 benefits from 4th-order 
detector, we get the ML estimate of symbol s1 conditional on 
(s3, s4) . Note that the elimination of the terms involving s2 
is possible if and only if the respective coefficients of the 
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symbols s1 and s2 in each column of the code matrix are 
identical. 

This method, which is shown in Fig. 2, reduces the ML 
receiver complexity from M4 to M2. 

 

Fig. 1 Operation of the received signals to determine the ML 
estimate of symbols s1 and s2 conditional on a particular 

combination of symbols s3 and s4. 

 
Fig. 2 Second stage of the estimator. 

Note that the special structure of figure1 allows the ML 
detector also to work the other way round: Instead of 
deriving the ML estimate of (s1,s2) conditional on (s3k,s4l) 
and then computing the metric D(s1,s2,s3,s4) for 
(𝑠𝑠1
𝑀𝑀𝑀𝑀 , 𝑠𝑠2

𝑀𝑀𝑀𝑀 ,s3k,s4l ), we can first estimate (s3, s4) conditional 
on (𝑠𝑠1

𝑘𝑘 , 𝑠𝑠2
𝑙𝑙 ), then compute the metric D(s1,s2,s3,s4) 

for(s1k,s2l s3ML,s4ML ), for k, 1 = 1, 2 ....M, and select the 
quadruplet (s1,s2,s3,s4) minimizing the metric. 

It is instructive to point out here that the described detector is 
optimum only when the magnitudes of a and c (alternatively 
the magnitudes of b and d for the reverse detection order) are 
equal. This can be easily seen by looking at the SNR at the 
receiver input and then at the threshold detection input. 
Certainly, these two signal to noise ratio values are the same 
if and only if |a| = |c| for forward detection and |b| = |d| for 
reverse detection. 

The a, b, c, d parameters in the code matrix are design 
parameters to be optimized in order to obtain full-diversity 
STC with large coding gain. This task takes long time for 
higher constellation sizes. The transmit power constraints can 
further decrease the number of parameters to be optimized. 

In terms of the transmitted power, conditions can expressed 
as 

|a|2+|b|2=1=|c|2+|d|2 

|a|2+|c|2=1=|b|2+|d|2 

The first condition ensures an equal transmit power at all 
symbol instance, as the next condition ensures that equal 
whole power is transmitted for each symbol. These equalities 
together with the constraint |a| = |c| for optimal detection lead 
immediately to the fact that all the design parameters should 
have the same scale, i.e., |a| = |c| = |b| =  |d| = 0.707. 

Without any loss of generality, we take  a=c = 0.707 (this 
allows to decrease the number of unknown parameters 
without affecting the coding gain) and make an exhaustive 
search to optimize the parameters b and d. 

A.  Rate-3/4 2 × 2 STC 

The STC given in (5.5) can be modified for a further 
reduction in the optimum detector complexity. More 
specifically, by setting s4 = s3 and scaling the energy of this 
symbol, we obtain the following 2 × 2 code with rate 3/4: 

 Xnew
3/4 = �𝑎𝑎𝑠𝑠1  +  𝑏𝑏𝑠𝑠3/√2 −𝑐𝑐𝑠𝑠2

∗ − 𝑑𝑑𝑠𝑠3
∗/√2

𝑎𝑎𝑠𝑠2  +  𝑏𝑏𝑠𝑠3/√2 𝑐𝑐𝑠𝑠1
∗ +  𝑑𝑑𝑠𝑠3

∗/√2
�,(3.21) 

where the notationXnew
3/4  is used to distinguish the proposed 

code Xnew(5.5)  from its reduced-rate version. 

In order to detect the transmitted symbols, the occupied ML 
detector makes an thorough search over all possible values of 
the transmitted symbols and decides in favor of the triplet 
(s1, s2, s3) which minimizes the Euclidean distance that we 
denote by D(s1, s2, s3). Specifically, this exhaustive search 
involves the computation of M3 metrics and M3 – 1 
comparisons, which is also excessive for the 16-QAM and 
64-QAM signal combinations. Currently, falling the symbol 
s4 lends itself to a lower-complexity implementation of the 
ML detector at the price of transmission rate reduction. 

More precisely, following the same procedure as that 
presented for the full-rate case, it can be seen that the signals 
uk, k = 1, 2, will have only terms involving the respective 
symbol sk and the estimation of symbols sk, k = 1, 2, will 
benefit from full fourth-order spatial diversity. By sending 
the signals u1 and u2 to a threshold detector, we acquire the 
ML estimation of symbol s1 and s2 conditional only on the 
mark s3. Make a note that, as a natural consequence of 
similarity to the full-rate case, the elimination of the terms 
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involving s2 can be possible iff the coefficients a and c have 
the same scale. In this method, for a known value of symbol 
s3, we get the ML estimate of (s1, s2), which we denote 
(𝑠𝑠1
𝑀𝑀𝑀𝑀 , 𝑠𝑠2

𝑀𝑀𝑀𝑀 |s3). Now, instead of computing the metric D(s1, 
s2, s3) for all (s1, s2, s3) values, we only need to compute it 
for ( (𝑠𝑠1

𝑀𝑀𝑀𝑀 , 𝑠𝑠2
𝑀𝑀𝑀𝑀 |s3), s3). In other words, the optimum receiver 

computes the metric D(s1, s2, s3) for( (𝑠𝑠1
𝑀𝑀𝑀𝑀 , 𝑠𝑠2

𝑀𝑀𝑀𝑀 |𝑠𝑠3
𝑙𝑙 ),𝑠𝑠3

𝑙𝑙 ), l = 
1, . . .,M. This procedure evidently reduces the ML receiver 
complexity from M3 to M. Optimization of the parameters in 
the reduced-rate case can be performed similarly to the full-
rate case. The parameters a and c can be set to 1/√2 without 
any loss of generality. 

IV. RESULTS 

In this section, we present some comparisons between the  
new STCs and the existing STCs. Simulations were carried 
out for different QPSK, 16-QAM and 64-QAM signal 
constellations, and the results are calculated for an 
uncorrelated Rayleigh fading channel with E[|hkl|2] = 1 for 
all k, l. Only 2 receive antennas were used in all cases. 

A. Complexity, Rate  and Diversity comparison 

Complexity is determined by number of metrics computed 
for symbol estimation. Table 1 shows Rate ¾ code is least 
complex than existing STCs because it requires only four 
metrics with QPSK constellation, sixteen(16) metrics with 
16-QAM constellation and sixty four(64) metrics with 64-
QAM constellation, we can’t treat full rate(only 3 symbols 
are transmitted in two time slots in steed of four). In general 
Rate ¾ code complexity is M(constellation size). 

 QPSK 
16 

QAM 
64 

QAM 
Rate Diversity 

Alamouti 
STC 

16 256 4096 ½(half) 
Full 

(4thorder
) 

SM 16 256 4096 1(full) 
Half (2nd 

order) 
Golden 
Code 

256 65536 
16777
216 

1(full) 
Ful l(4th 

order) 
New 

FRFD 
STC(low) 

16 256 4096 1(full) 
Full (4th 

order) 

Rate 3/4 4 16 64 3/4 full 
Table 1: Complexity(number of metrics), corresponding Rate  

and Diversity comparison for different STCs 
 
Complexity is determined by number of metrics computed 
for symbol estimation. As shown in table 1  Rate ¾ code is 

least complex Existing STC’s it requires only four(4) metrics 
with QPSK constellation, sixteen(16) metrics with 16-QAM 
constellation and 64 metrics with 64-QAM constellation, it is 
not full rate(as we transmitting three(3) symbols are 
transmitted in two time slots). In general Rate ¾ code 
complexity is M(indicates constellation size). So in practical 
implementation of view Rate ¾ code is implementable with 
less hardware(less chip area),even it is possible for higher 
constellations 512-QAM, 1024-QAM. Practical 
implementation becomes expensive for Golden Code even it 
is full rate and full diversity STC at higher constellation 
sizes. 

B. Performance Comparison in the Full-Rate Case 

Performance comparisons between the low complexity full-
rate full diversity 2 × 2 STC and the Alamouti STC. Figure 4 
shows the BER performance as a function of Eb/N0, where 
Eb denotes the average signal energy per symbol, and 
provides comparisons between Xnew, new STC, and Xg is a 
Golden code. It can be seen that Xnew achieves the same 
diversity gain and gives essentially the same results as Xg at 
substantially lower complexity. Indeed, their conclusion is 
that the performance of low complexity full-rate full 
diversity 2 × 2 STC is marginally very close to that of Xg. 

 

Fig. 3 Performance variation between low complexity HRFD 
STC and Alamouti STC 

The complexity reduction can be observed from table 1, low 
complexity High-rate full diversity 2 × 2 STC results in a 
considerable reduction in the number of computations. These 
results indicate that Xnew enables to reduce the hardware 
complexity without any significant performance degradation. 

C. Performance Comparison in the Rate-3/4 Case 
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We now provide a performance comparison between𝐗𝐗3/4

𝑛𝑛𝑛𝑛𝑛𝑛  ,  
the proposed rate-3/4 STC, and the two MIMO schemes in 
current mobile WiMAX system specifications (Alamouti’s 
STC and SM). With the optimized values, the proposed STC 
maximizes the diversity gain as indicated in figure 3 and, 
therefore, it achieves the same BER slope of curve as 
Alamouti’s STC with constant coding gain independent of 
the constellation size.  

 

Fig. 4 SNR for various QPSK constellations of Alamouti, 
SM and Rate3/4 STCs 

The results shown in Figure 4 indicate that, the Alamouti 
scheme has the best BER performance and also the lowest bit 
rate on a given channel. The SM scheme doubles the bit rate, 
but we find  strong SNR loss, SNR loss increases at lower 
BER(Bit Error Rate) values. As Shown from these results, 
the proposed rate-¾ scheme is an interesting alternative to 
those two MIMO schemes. 

V. CONCLUSION AND FUTURE SCOPE 

In this paper, I presented a new low complexity high-rate 
full-diversity 2×2 STC leading to a low-complexity optimum 
decoder. We have compared its performance with existing 
codes and the results shows that the proposed scheme 
achieves good performance of the known code while 
reducing the decoder complexity by magnitude in QPSK, 16-
QAM, and 64-QAM based MIMO systems. The rate-3/4 and 
full-diversity 2×2 STC whose optimum decoder complexity 
increases linearly with the number of constellations. We have 
compared its performance to the two MIMO schemes, As the 
results are showing that it stands as an interesting alternative 
providing further good performance and spectral efficiency.  

In future the low complexity STC design will implement for 
higher order 4×4 , 6×6 and various antenna configurations as 
described above. Thus, the STC design creates new 
perspectives for next evolutions of Wi-MAX systems and for 
other wireless systems. 
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