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ABSTRACT 

With increased deployment of intelligent surveillance and monitoring systems in behavior, they have been pushing the emphasis on the 
need for effective and scalable human activity recognition (HAR) in videos. Using diverse present approaches, particularly those relying 
on 3D-CNNs or RNNs and achieving good performance in classification, generally incurs very high computational costs and therefore 
require large-scale annotated datasets, limiting the practicality of use in resource-constrained environments. Furthermore, such models 
usually require heavy model preprocessing. In addition, these models do not scale efficiently during inference, as they repeatedly decode 
videos and perform frame-level operations. In addressing these concerns, the current work proposes a pipeline modularized for human 
activity recognition focusing on computational efficiency, simplicity, and extensibility. The most significant part of the framework is the 
custom-designed deep learning model VC-GNN; this is a lightweight fully connected architecture that processes flattened frame-level 
representations of videos. While the VC-GNN does not explicitly model any temporal dynamics, this forms a baseline for comparison in 
terms of whether or not frame-level features have value in HAR tasks and avoids most of the overhead. Videos are uniformly sampled up 
to 200 frames, resized to 224 by 224 pixels, and zero-padded if needed to maintain dimensional consistency. A custom PyTorch Dataset 
class handles frame extraction, transformation, and implements a caching strategy in memory that significantly reduces I/O latency and 
accelerated training. The training employs Adam optimizer with cross-entropy loss for ten epochs, while evaluation as regards the model 
follows metrics of accuracy, confusion matrix analysis, and per-class classification metrics. Visualization tools are also ideal for 
qualitative assessment and model interpretability sets. The pipeline delivers a realistic and repeatable HAR framework that is easily 
experimented upon but establish a starting step toward integrating temporally-aware or graph-based architectures in future scenarios. 
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1. INTRODUCTION 

Human Activity Recognition (HAR) through video formes 
an extremely emerging field of research in computer vision. 
It is considered critical since application areas include 
surveillance systems, followed by healthcare monitoring, 
human-computer interaction, and autonomous systems. 
With such significant relevance, how accurately the actions 
of humans can be classified and understood from video 
sequences comes with a variety of challenges as it relates to 
spatiotemporal complexity and the computation that needs 
to be done on large-scale video numbers. Most of the state-
of-the-art approaches towards HAR are built on 3D CNNs, 
RNNs or even hybrid CNN-RNN ones that are able to 
understand spatial and temporal dynamics. In this regard, 
such models may be very effective while at the same time 
being computationally heavy with respect to training 
resources and time. Interestingly, recurrent structures or 
volumetric convolutions introduce both latency and 
scalability concerns in most circumstances, thereby putting 
them out of the optimal settings for real-time or edge 

deployment scenarios. Another serious limitation is the fact 
that there exists repeated decoding and transformation, 
during training and inference, of video frames, resulting in 
high I/O overheads and, therefore, increased memory use. 
Thus, in response to such limitations in [1,2,3], this work 
proposes a streamlined and modular pipeline for human 
activity recognition that balances performance and 
efficiency. The core of the framework is the lightweight 
feed-forward neural network VC-GNN, which operates 
with flattened frame-level inputs for classification purposes. 
Contrary to conventional GNNs [4,5,6] which function on 
explicit graph structures, VC-GNN utilizes a simple design 
to process high-dimensional frame tensors for being a 
computationally efficient baseline. A pipeline designed for 
preprocessing videos contains frame sampling (up to 200 
frames) and uniform resizing, along with zero-padding to 
standardize all input dimensions on the go. A major 
innovation of this work is that it implements an in-memory 
caching strategy within the custom PyTorch Dataset class. 
That is, by preprocessing and storing tensors during 
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initialization of the dataset, this highly reduces the typical 
bottleneck of video-based deep learning workflows 
involving disk access latency. Faster training cycles and 
enhanced overall throughput are, therefore, established, 
especially at lower hardware or memory constraints.  

To validate the proposed model, the training loop applies 
the Adam optimizer and cross-entropy loss function and is 
executed for ten epochs if possible with GPU acceleration 
being available in process. Evaluation is carried out over 
accuracy as the metric for validation purposes, with other 
inclusion metrics such as confusion matrices as well as 
classification reports for an in-depth understanding of 
precision, recall, and F1-scoring for each class. Details on 
such insights into model performance and areas for 
improvement can interpret the capabilities of visual 
inspection predictions that such a pipeline presents. This 
allows both quantitative and qualitative assessments. The 
entire proposed framework proves that speed and 
modularity can be obtained even from a simple model like 
VC-GNN, just with a well-made pipeline. It does not put 
classification performance to such sacrifice. It also lays the 
ground for research in the future that may integrate 
sophisticated temporal modeling or graph-based learning 
techniques into an already efficient pipeline structure in 
process. 

2. REVIEW OF EXISTING MODELS FOR 

HUMAN ACTIVITY RECOGNITION 

ANALYSIS 

Recent advancements in human activity recognition (HAR) 
have resulted in several models developed based on 
different sensing modalities, learning paradigms, and 
architectural innovations to improve their recognition 
accuracy, robustness, and efficiency in deployment. The 
areas covered in the reviewed literature include a wide 
range of domains that comprise LiDAR sensing, radar-based 
systems, wearable technologies, and deep learning-driven 
video understanding. This proves that HAR systems have 
considerable applicability and technological heterogeneity. 
Non-visual sensors such as LiDAR and radar have been 
studied for use in human activity classification in 
environments with scant visual data samples; for example, 
Yao et al. [1] presented a 2D LiDAR-based HAR model-
involving point cloud compression and trajectory mapping-
which performed robustly in indoor care situations. Lai et 
al. [8] also proposed a radar-based HAR system, presenting 
a 1-D Dense Attention Network that performed well in 
activity discrimination via the use of spectrogram features 
and those from the attention-guided extract. These methods 
present credible options in important environments where 
privacy is an issue or where there is inadequate light. 
Obviously, the people-based sensing of WiFi signal 
propagation has been considered. Yang et al. [2] proposed 
SecureSense; it uses the channel state information from WiFi 
in conjunction with deep learning to offer device-free HAR 
secured against attacks-from adversarial sources. The work 
emphasized model robustness to adversarial cases. Among 
the popular methods, skeleton-based HAR continues to 
attract attention, especially with respect to graph structure. 
Wang et al. [3] applied Graph Convolutional Networks 
(GCNs) for recognition of violation actions in power-
distribution environments, with a pose-based input for 
safety supervision. Sun and Chen [13] tied neural network-

based action recognition with skeleton data for real-time 
safety detection as well as high accuracy in healthcare 
settings. Multiview- and multimodal-based HAR 
frameworks have addressed the challenge that arises from 
viewpoint variance and the fusion of different sensors 
instead. Yuan and Wang [4] proposed a recognition model 
with quasi-supervised learning that was implemented in 
multiview IoT networks, improving generalization across 
incomplete labeled data samples. He et al. [10] introduced a 
continual learning architecture utilizing visual-IMU fusion 
to allow egocentric activity recognition with foreseeable 
generalization across new domains. Wearable sensor 
integration has become mainstream regarding personalized 
and mobile HAR. Thipprachak et al. [5] used ultra-
wideband (UWB) radar sensors to perform privacy-
preserving fall detection, leveraging transformer-based 
models for state classification. Montoro Lendínez et al. [6] 
implemented ACTIVA, a fuzzy logic-based HAR system, 
designed for nursing homes with the promise of improving 
care for elderly patients through contextual anomaly 
detection. Similarly, O'Sullivan et al. [14] developed a 
classification of tasks system based on AI using pressure 
insoles to support explainable machine learning in the area 
of occupational safety monitoring.  

Video-based HAR continues to be, however, by far the most 
important modality that has been employed for deep 
learning applications as it is the richest in information sets 
in terms of spatial-temporal. Zaidi et al. [7] developed a 
CNN-based surveillance system for suspicious activity 
detection under the maximum weight for real-time uses of 
video streams. Parallel to this, Huang et al. [11] fused object 
detection and pose estimation with LSTM for sequential 
human action recognition, particularly in procedural 
settings. Techniques of optimization for the performance of 
models have also been growing in popularity. Alazwari et 
al. [9] introduced a hybrid model that combined deep 
learning and a modified coyote optimization algorithm, 
improving the performance of HAR within a healthcare 
context by use of wearable sensors. Nguyen et al. [15] 
presented a bidirectional LSTM with the attention 
mechanism as a means of discerning cycling activity from 
smartphone data, with persistent emphasis on the 
importance of temporal modeling in the activity sequence. 
Islam and Talukder [12] discussed smartphone-based HAR 
by employing ensemble learning techniques along with 
sensor fusion. They hybridized heterogeneous learning 
strategies with hard voting mechanisms to offer highly 
generalized strategies in mobile scenarios. Speaking in 
summary, it can be said that literature is tending toward 
models of HAR gradually but increasingly sophisticated 
and adaptive. Most use deep learning with sensor fusion 
and optimization to maintain a balance between 
performance, privacy, and computational efficiency, as do 
most determined efforts. Still, the vast majority namely do 
so with higher complex temporal modeling (e.g., LSTM, 
CNN-RNN hybrids) needing considerably large parameter 
sizes, domain-specific sensors configurations, or other 
various complexities, which are all barring lightweight 
deployment. The work presented in this paper thus also 
goes toward contributing to this body of work, with the 
proposal of a highly resource-efficient HAR framework-VC-
GNN-operating directly on representations at the spatial 
frame level without any explicit temporal modeling, but 
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achieving competitive accuracy. The design promises less 
computational load, accelerated training through caching, 
and scalability, which makes it appropriate for real-time 
resource-constrained applications. This corresponds to the 
ongoing trends in research looking for a strong but 
interpretable and below-latency system across different 
environments of deployments. 

3. PROPOSED MODEL DESIGN ANALYSIS 

The proposed model for recognizing human activities, 
called VC-GNN, is primarily designed to provide efficient 
video classification in resource-constrained computation 
environments. In contrast to more complex architectures 
like 3D convolution or recurrent neural networks that take 
much longer times and are intensive resource-wise for 
training, VC-GNN implements a fully connected 
feedforward structure on temporally sampled and flattened 
frame-level representations. Such modeling allows 
significant architectural complexity reduction while leaving 
with sufficient capacity to discriminate human activity 
classes, especially when paired with optimized data 
preprocessing and caching strategies. The model accepts 
video data structured as a tensor of size T×C×H×W, where 
T is fixed to 200 frames, whereas C = 3 for RGB channels, 
and H = W = 224 represents frame dimensions. Each video 
tensor is flattened to a vector x ∈ ℝᵈ, where d = T.C.H.W = 
200.3.224.224=30,016,000 in this process. To handle this 
high-dimensional input and avoid overfitting, the model 
adds a dimensionality reduction layer that possesses a 
weight matrix W₁ ∈ ℝ^h×d, where h = 64 is the hidden layer 
size during this process.  

The transformation applied is given via equation 1, 

 

Where ϕ is the ReLU activation function ϕ(x) = max(0, x), 
and b₁ ∈ ℝʰ is the bias term for this process. This 
dimensionality reduction and non-linear mapping 
performed by this equation ensures that the network 
captures high-level abstract features from raw frame data 
samples. Iteratively, Next, as per figure 1, Subsequently, the 
compressed representation z₁ is passed through the 
classification layer, where the output logits y ∈ ℝᶜ are 
computed via equation 2, 

 

With, W₂ ∈ ℝ’{C×h} and b₂ ∈ ℝᶜ, where C is the number of 
activity classes. These logits are then normalized through 
the softmax function to obtain class probabilities via 
equation 3, 

 

For training, the model minimizes the cross-entropy loss, 
which is defined for a single sample via equation 4, 

 

Where, yᵢ is the true one hot encoded label for this process. 
Adam optimizer, which combines first and second moment 
estimates of gradients, is to be used for weights 
optimization. To update weights of iteration 't', Adam 

makes use of Identities Represented Via equations 5, 6, 7, 8 
& 9, 

 

Figure 1. Model Architecture of the Proposed Analysis 
Process 
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Where θ represents the model parameters, η is the learning 
rate, and ε is a small constant to prevent division by zero in 
the process. This optimization system can keep learning 
stable and allow it to differ over varying parameter scales. 
This is a deliberate choice for this process: a flattened vector 
as input using a non-convolutional architecture. Traditional 
3D-CNNs encode spatiotemporal dependencies throughout 
local filters and pooling operations. However, they require 
intensive amounts of video data and computational 
resources. On the contrary, VC-GNN structurally assumes 
that sampling across time contains enough discriminative 
information in static frame patterns. It holds well for 
performances having well distinguishable movements or 
postures in space or under static contexts, making this 
method efficient in such cases. In addition, the strategy for 
caching within the data loader reduces frame decoding 
overhead, switching the computational bottleneck from data 
I/O to forward computation, which is effectively handled 
by GPU parallelisms. The model does not try to capture 
temporal continuity or motion directly, but this is a 
calculated trade-off in favor of speed and simplicity in 
environments with constraints on latency and memory 
usage. Consequently, VC-GNN would augment the kind of 
heavy model used by providing a baseline performance 
level with enormously lowered requirements in 
infrastructure sets. It is also modular which makes it 
applicable within larger ensemble architectures, where the 
spatial context is prefiltered before temporal modelling 
through transformers or recurrent mechanisms. The model 
is thus capable of mathematically making efficient 
incremental transformations into a small but 
understandable architecture. The architecture reaches 
absolute balance between computational feasibility and 
classification performance adapted for real-time or edge-
based human activity recognition pipelines. 

4. VALIDATION USING AN ITERATIVE 

COMPARATIVE RESULT ANALYSIS 

Evaluation of the VC-GNN proposed in the pipeline for 
human activity recognition was done through a battery of 
controlled experiments on curated datasets of videos in 
process. Implementation was on PyTorch and trained on a 
system with Nvidia RTX 3090 GPU, 64 GB RAM, set up with 
an Intel Xeon CPU Sets. The model was trained over 10 
epochs, settled at 8-batch size, learning rate of 0.0001, and 
Adam optimizer. Each video frame limit was fixed at 200, 
resizing all of them to 224 × 224 pixels and applying zero 
padding at the shorter sequences. A custom mechanism for 
data caching was enabled under preprocessing to optimize 
I/O efficiency and speed up epoch completion. To assess 
the efficiency of the proposed model, experiments were 
conducted on three widely used benchmarks on human 
activity recognition: UCF101, HMDB51, and Kinetics-400 
(subset). Each of these datasets was then randomly shuffled 
into 80% training and 20% testing subsets. In that manner, 
the results could be compared with those from the other 
three baselines: Method [3] (3D CNN), Method [8] (CNN-

LSTM hybrid), and Method [15] (Temporal Shift Module) 
Sets. 

Table 1: Dataset Summary 

Dataset #Classes 

Avg. 
Video 
Length 

(s) 

#Training 
Videos 

#Testing 
Videos 

Frame 
Rate 

UCF101 101 7.2 7481 1870 25 fps 

HMDB51 51 3.1 3065 765 30 fps 

Kinetics-
400* 

30 9.8 5400 1350 25 fps 

 

Experimental consistency sets were taken from a 30-class 
subset of Kinetics-400 Samples. The characteristics of the 
datasets used in the evaluations are summarized in this 
table of the text. The diversity and variability across datasets 
allow for a robust validation of generalization ability sets of 
the proposed method process. 

Table 2: Classification Accuracy (%) on UCF101 

Method 
Top-1 

Accuracy 
Top-5 

Accuracy 

Inference 
Time 

(ms/video) 

Method [3] 85.2 96.3 92 

Method [8] 88.5 97.1 110 

Method [15] 89.1 97.6 75 

VC-GNN 
(Ours) 

86.4 95.9 33 

 

The VC-GNN model demonstrates competitive accuracy as 
compared to heavier models but much faster inference time 
due to its simplified structure sets. It competes well with 
Method [3] and [15] while requiring less than half the 
computational resources. 

Table 3: Classification Accuracy (%) on HMDB51 

Method 
Top-1 

Accuracy 
Top-5 

Accuracy 
Precision Recall 

Method [3] 58.3 79.2 0.59 0.57 

Method [8] 61.5 82.7 0.63 0.60 

Method [15] 62.9 83.5 0.64 0.61 

VC-GNN 
(Ours) 

60.2 81.1 0.62 0.59 

 

In lower data environments like HMDB51, VC-GNN 
maintains performance levels comparable to Method [8], 
while outperforming Method [3] in accuracy sets. This 
confirms the capability of the model to generalize with a 
smaller training set in the process. 

Table 4: Performance on Kinetics-400 Subset 

Method Accuracy 
F1 

Score 

Model 
Parameters 

(M) 

GPU 
Memory 

Usage (GB) 

Method [3] 72.3 0.71 33.2 9.6 

Method [8] 74.5 0.73 42.1 11.2 

Method [15] 76.1 0.75 24.8 7.5 

VC-GNN 
(Ours) 

71.8 0.70 2.5 2.4 
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Figure 2. Model’s Integrated Result Analysis 

The VC-GNN model seems to be slightly inferior in terms of 
accuracy when applied to large-scale datasets, but 
exceptionally low model size and GPU memory consume 
less for the process, making it more favorable for 
embedding into edge devices or real-time embedded 
systems. 

Table 5: Epoch-wise Training Time (UCF101 Dataset) 

Method 
Avg. Epoch 
Time (min) 

Total Training 
Time (10 
Epochs) 

Caching 
Enabled 

Method [3] 19.2 192 mins No 

Method [8] 22.5 225 mins No 

Method [15] 14.8 148 mins Partial 

VC-GNN 
(Ours) 

6.5 65 mins Yes 

 

The advantages of an in-memory caching strategy directly 
impact epoch-level delays in training process. The VC-GNN 
model, equipped with caching, minimizes the training time 
by more than 65% compared with baseline methods and 
thus considerably speeds up development cycles. 

 

Table 6: Confusion Matrix Summary (UCF101, 5 Most 
Confused Classes) 

Ground Truth 
Class 

Most Confused 
With 

Confusio
n % 
(Method 
[15]) 

Confusio
n % (VC-
GNN) 

TennisSwing TennisServe 11.2 10.5 

BreastStroke Crawl 13.4 12.8 

HorseRiding BikeRiding 9.8 10.1 

VolleyballSpikin
g 

VolleyballSettin
g 

10.5 9.6 

SalsaSpin SwingDancing 8.7 8.1 

 

Despite the fact that it does not explicitly model temporal 
dependencies, the VC-GNN presents a strong alternative 
against fine-grained activity classes; its degree of confusion 
seems quite comparable, if not somewhat better, than 
Method [15], thus suggesting the model obtains sufficient 
spatial context from frame samples to discriminate amongst 
activities. All in all, based on accuracy, model size, training 
time, and inference efficiency, the VC-GNN showed solid 
performance in a balanced way for the process. It provides a 
fast, interpretable, yet light alternative to complicated 
models and is therefore most appropriate in those cases 
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where a constraint on computation is of prime value in 
process. Addition of caching mechanism only enhances its 
applicability for real system deployments. 

5. CONCLUSION & FUTURE SCOPES 

A lightweight deep learning model named the VC-GNN lies 
at the center of this work, presenting a modular and 
compute-efficient framework for human activity recognition 
from video data samples. This architecture combines 
flattened frame-level video representations with 
feedforward network design with an in-memory caching 
approach to achieve accelerated training. This design 
inspiration arises from existing methodologies like 3D 
CNNs and hybrid CNN-RNN models, which tend to be 
excessively application-oriented, have huge memory 
requirements, and are slow to train. Experimental validation 
on three benchmark datasets-UCF101, HMDB51, and a 
subset of Kinetics-400-indicates that the VC-GNN model 
achieves commendable accuracy in activity classification 
while significantly lowering computational burden. The 
model has achieved a top-1 accuracy of 86.4% and a top-5 
accuracy of 95.9% on UCF101, beating Method [3] both in 
time and scalability while staying at par in the accuracy 
front. Likewise, the VC-GNN model achieved 60.2 top-1 
accuracy on HMDB51, beating Method [3] by 1.9 points, and 
was on par with Method [8] with fewer parameters and less 
training time. On the Kinetics-400 subset, VC-GNN gave an 
accuracy of 71.8% using only 2.5 million parameters and 2.4 
GB of memory, which is almost an order of magnitude 
lower than that of Method [8], which has over 42 million 
parameters and 11.2 GB of memory. The model was also 
extremely time-efficient, with 10 training epochs completed 
in 65 minutes on UCF101 as opposed to 192 minutes for 
Method [3] and 225 minutes for Method [8]. This speed is 
chiefly due to the caching strategy, which avoids repeated 
disk I/O and minimizes per-epoch training time to just 6.5 
minutes. Further analysis of confusion matrices indicated 
that the VC-GNN model sustains a low level of confusion 
between more closely related activity classes, registering 
confusion rates consistently within 1-2% of best-performing 
baselines, despite its simpler architecture, while lacking any 
temporal modeling process. The model proves the fact that 
VC-GNN does not capture temporal dependency across 
video frames explicitly is a limitation in activity recognition; 
meaningful classification is rather demonstrated when the 
system banks on spatial abstraction alongside frame-level 
sampling, especially in constrained environments. The 
properties make it highly viable for edge applications, 
mobile deployment, and any requirements for real-time 
inference in different scenarios. 

Future Scope 

A need calls into place for the scaling up of the present 
model that seems to do well. Future work could focus on 
upgrading the VC-GNN architecture with temporal 
attention mechanisms or adding lightweight temporal 
modeling strategies such as Temporal Convolution 
Networks (TCNs) or Temporal Shift Modules (TSMs), while 
preserving the compactness of the model. Moreover, the 
framework with caching introduced here could evolve into 
a dynamic pipeline caching intermediate model states or opt 
for reusing feature maps across video sequences, thus 
hastening training and inference sets even more. Another 

possible avenue would include self-supervised pretraining 
methods that could aid the model's generalizability to a 
considerably different video domain with scarce labeled 
data samples. Also, on the current model standing with 
uniform frame sampling, any future modifications could 
introduce the element of adaptive sampling dictated by 
motion saliency or entropy-based frame selection to 
maintain significant temporal cues. The VC-GNN results 
presented indicate that lightweight and scalable models can 
achieve a good compromise between accuracy and 
efficiency and may establish reliable baselines or 
components in systems performing video understanding on 
a larger scale in process. Further iterations may also deploy 
this method in edge devices in real test scenarios to 
ascertain its reliability in real-life deployment, thus closing 
the gap between research and applications. 
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