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ABSTRACT 

This paper presents the comparative study of compact mapping and Hilbert space. Here, we denote the scalar product of two elements (x, y) 
of a (real or complex) Hilbert space by (x, y). Here, it is proved in this paper that the comparative study of compact mapping and Hilbert 
space is the resultant of the spectral theory of compact symmetric operator. 
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1. INTRODUCTION 

Hall (1) and Kothe (2,3) are the pioneer worker of the 

present area . In fact , the present work is the extension of 

work done by Wong , Yau- Chuen (11) , Prasad, B; et al . (4), 

Srivastava et al. (5), Srivastava et al. (6) , Srivastava et al .(7), 

Srivastava, et al. (8),  Srivastava et al.(9) and Srivastava et al. 

(10). In this paper we have studied Comparability about  

compact mapping and Hilbert Space. 

Here , we use the following definitions, Notations and 
Fundamental ideas : 

If M and N are subspaces of a Linear space X such that 

every xX can be written uniquely as x = y + z where y ϵ 
M & z ϵN then the direct sum of M and N  can also be 

written X= M  N where N is called complimentary 

subspace of M in X and if  M  N = {0 }, the 
decomposition x = y + z is unique. 

A given subspace M has many complimentary 
subspaces and every complimentary subspace of  M has 
the same dimension and the dimension of a 
complimentary subspace is called co-dimension of M in X 
, as if  X = R3 and M is a plane through the origin then 
any line through the origin that does not lie in M is a 
complimentary subspace.  

If  X = M  N then we define the projection P: X  X 

of X on to M along N by Px = y, where x = y+z with y  

M , Z N which is Linear with ran P = M and ker P = N 
satisfying  P2 = P. This property characterizes projections 
for which the following definitions and theorems follow:-  

Definition 1:  Any projection associated with a direct sum 
decomposition of a projection on a Linear space X is a 

linear map P:X  X such that P2 = P 

Definition 2: An orthogonal projection on a Hilbert space 

H is also a Linear mapping    P:H  H satisfying P2 = P, 

<Px,y> = <x , Py>  for all x, y  H. 

“An orthogonal projection is necessarily bounded.” 

Theorem 1 :  Let X be a linear space, 

(i) If  P:X  X is a projection then X = ran P  kerP 

(ii) If X = M  N where M and N are Linear subspaces 

of X then there is a projection P:X  X with ran P = 
M  and ker P = N. 

Proof: 

For (i) We show that x  ran P if x = Px 

If x = Px then clearly x  ran P 

If x ran P then x = Py for some y  x 

And since P2 = P which follows that Px = P2y = Py = x  
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If x  ran P  kerP then x = Px & Px  = 0 

So ran P  kerP = {0}. If x  X then  

We have x = Px + (x- Px) ; where Px  ran P and (x – 

Px)  kerP . 

Since P (x- Px) = Px - P2x = Px –Px = 0 

Thus X  = ran P  kerP. ………………………(1.1) 

Now for (ii) 

We consider if X = M N then x  N has unique 

decomposition x = y+z with y M & Z  N and Px = y 
defines the required Projection.  

In particular, in orthogonal subspaces while using 
Hilbert Space, let us 

Suppose that  M is a closed subspace of Hilbert Space 

H then by well-known property we have H = M M . 

We call the projection of H on to M along M  the 
orthogonal projection of H on to M. 

If x= y+z and x1 = y1 + z1 where y, y1  M and z, z1  

M then by orthogonality of M and M   <Px, x1> = <y, 
y1 +z1> = <y, y1> = <y+z, y1> 

     = <x, Px1> ……………    (1.2) 

Which states that an orthogonal projection is self 
Adjoint. We show the properties (1.1) and (1.2) 
characterize orthogonal projections with Defn-2 . 

Lemma :- If P is a non zero orthogonal projection then           

 P = 1 . 

Proof : - If x  H and Px ≠ 0 then by Cauchy Schwarz  
inequality , 

  Px   =  < Px, Px> = <x, P2x > = < x, Px > ≤  x 

         Px     Px                  Px  

Therefore   P  ≤ 1. If  P ≠ 0 then there is an x H with 

Px ≠ 0 and  P( Px)  =  Px   so that  P ≥ 1. 

Thus, the Orthogonal Projection P and closed subspace 
M of H such that ran P = M will must obey one – 
correspondence, then the kernel of Orthogonal Projection 
is the Orthogonal Complement of M.  

Example .1 – The space L2 (R) is the Orthogonal direct 
sum of space M of even functions and the space N of odd 
functions .The Orthogonal Projection P and Q of H onto 
M and N, respectively are given by  

Pf (x) =  f (x) + f(-x)  , Q f (x) = f (x) – f (-x ) 
           2                          2 

Where I- P = Q . 

Proposition:  

(a) A Linear functional on a Complex Hilbert space H is 

a Linear map from H to C. A Linear functional  is 
bounded or continuous, if there exists a constant M such 

that   (x)  ≤ M  x  for all x  H . 

The norm of bounded linear functional  is  

   = sup  (x)  

 x  = 1 

If   y  H then y (x) = < y, x > is a bounded Linear 
functional on H, with  

                  y  =  y . 

(b) If  is a bounded Linear functional on a Hilbert space 

H, then there is a unique vector  y  H such that 

 (x) = < y, x>   for all  x  H 

Theorem.2: (Riesz representation) If  is a bounded linear 
functional on a Hilbert space H , then there is a unique 

vector y  H such that 

 (x) = < y, x>   for all  x  H .   …………..   (2.1) 

Proof.  If  = 0 , then y = 0 , so we suppose that  ≠ 0. In 

that case , ker  is a proper closed subspace of H. and , it 
implies that , there is a nonzero vector 

z H such  that z ⊥ ker. We define a linear map P : H 

H by  

 Px  =  (x) / (z) .z 

Then P2 = P, so Theorem 1 implies that , H  = ran P  
kerP. Moreover,  

 ran P ={𝛼z|𝛼C}, kerP = ker 

So that ran P ⊥ ker P . It follows that P is an orthogonal 
projection, and  

H ={𝛼z|𝛼C}  ker is an orthogonal direct sum. We 
can therefore write  

x  H as x= 𝛼𝑧 +n,  𝛼C and n  ker. 

Taking the inner product of this decomposition with z, 
we get 

𝛼  = < z, x >/II z II2, and evaluating  on x = 𝛼𝑧 + 𝑛 ,
we find that  

    (x) = 𝛼  (z). 

The elimination α from these equations, and a 
rearrangement of the result                                                                                                           
                                                        ___ 

yields  (x) = < y, x > , where y =  (z)/II z II2.z  . 

Thus, every bounded linear functional is given by the 
inner product with a fixed vector. We have already, seen 

that y (x) = < y, x > defines a bounded linear functional 

on H for every y  H . To prove that there is a unique y 
in H associated with a given linear functional, suppose 

that  y1 = y2 . Then y1(y) = y2(y). When y= y1- y2 , 
which implies that II y1 – y2 II2  = 0 , so y1 = y2   . 

The Map J: HH* given by Jy =y , therefore identifies 

a Hilbert space H with its dual space H*. The norm of y 
is equal to the norm of y, so j is an isometry.  
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In this case of complex Hilbert spaces, J is antilinear, 

rather than linear, because y = λ̅φy.  Thus, Hilbert 
spaces are self – dual, meaning that H and H* are 
isomorphic as Banach spaces, and anti-isomorphic as 
Hilbert spaces. Thus Hilbert spaces are special in this 
respect. This completes the proof of the Theorem 2. 

Proposition: ( c )  An important consequences of the Riesz 
representation theorem is the existence of the adjoint of a 
bounded linear operator on a Hilbert space . The defining 

property of the adjoint A*  B(H) of an operator A  
B(H) is that  

< x, Ay > = <A*x ,y >           for all x, y  H ………     (2.2) 

The Uniqueness of A* is obvious. The definition 
implies that  

(A*)* = A,     (AB)* = B*A*. 

To prove that A* exists, we have to show that for every 

xH, there is a vector  

zH , depending linearly on x such that  

< z, y > = < x, Ay >             for all y  H  …………..  (2.3) 

For fixed x , the map x    defined by, x (y) = < x, Ay > 

is  a bounded linear functional on H , with IIxII ≤ IIAII 
IIxII . By the Riesz representation Theorem, there is a 

unique z  H such that x (y) = < z, y > . This z satisfies 
(2.3), So we get A*x = z . The linearity of A* follows from 
the uniqueness in the Riesz representation theorem and 
the linearity of the inner product . 

Thus, from above definitions, Theorems, Leema, 
example, Propositions (a), (b), & (C), which shows the 
proof of the main result as “the representation of 
compact mappings of Hilbert Spaces is a Consequence of 
the Spectral theory of Compact symmetric operators.  

1) Let H1 , H2  be Hilbert spaces , A £ (H1,H2) compact 
and not of finite rank . Then, there exists orthonormal 
systems, en , n = 1,2,………. In H1 and {fn }, n= 1,2,…….. 
in H2 such that 

               ∞  

2) A x = Ʃ λn (x, en ) fn , x  H1  where λn > 0 and λn → 0. 
               n=1 

Proof: - Since A is Compact, A*A is Compact too and positive, 
where A* denotes the adjoint in the sense of the scalar 
product . It follows from Spectral theory that there exists an 
orthonormal sequence of eigen vectors en , n= 1,2,3,…….. and 
eigen values  λn2 > 0 , λn2 →0 such that  

                         ∞ 
  A* Ax =Ʃ λn2 (x, en ) en ,  
              n=1 

A*A is zero on the orthonormal or complement H of the 
closed subspace spanned by all the en . But then A is zero too 
on H. 
Take y ϵ H and suppose Ay ǂ 0. 

Then (Ay , Ay ) = (y, A*Ay ) ǂ 0. But this would imply A*Ay ǂ 0, 
Therefore we have a representation 

                      ∞ 
   Ax = Ʃ λn (x, en ) A en. 
           n=1 

We now define  

fn  = (1/ λn )A en . Then  
                     ∞ 

   Ax =Ʃ λn (x, en ) fn     
              n=1 

and other proposition will be proved if we Show that { fn } is 
an orthonormal systems. 

But  (fi ,fk ) = (λi-1 Aei , λk-1 A ek ) 

         = λi -1 λk-1(A*Aei,ek ) 

          = λi -1 λk-1 (λi2ei, ek ) 

          =δik 

(3) Conversely every mapping A ϵ £(H1,H2) which has a 
representation (2) with 

λn > 0 , λn →0 is compact. 

                           K 
        Let Ak be   Ʃ λn (x, en )fn , ǀǀ(A - An )x ǀǀ2  
                           n=1 

                           ∞ 
          ≤ Ʃ λn2  ǀ (x , en) ǀ2 

                           n=k+1 
       
           ≤ ϵ2 ǀǀ x ǀǀ2 , it is  ǀ λn ǀ ≤ ϵ     for  n > k(ϵ).  

Thus A is compact as the limit of An in £b (H1 , H2 ) . From 
this proof and (1) follow immediately.  

(4). Let H1, H2 be Hilbert Spaces. Then every compact A ϵ 
£b (H1, H2) is the limit of a sequence of mappings of finite 
rank. 

Then λn of (2) are called the singular values of A and the 
non- increasing sequence of all singular values of A is 
uniquely determined by A , the representation (2)  can be 
written in a different way using linear forms instead of scalar 
product for the coefficients of the fn . 

The scalar product (x,y) in Hilbert space H is linear in x for 
y fixed , thus it defines a linear functional, < Ӯ , x  > = (x,y), 
where Ӯ is uniqually determined . One calls Ӯ the Conjugate 
element to y. There exists an Orthonormal basis {eα }, α ϵ A , 
of H such that   

For   x =  Ʃ ξα eα, y   
                α 

           
= Ʃ ηα eα 

                    α 

                   _ 
(x,y) = Ʃ ξα ηα =  < Ӯ , x  > 
          α 

                                                                                         _ 
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Since this is true for all x ϵ H, if follows that 

 the coefficients of Ӯ are the Conjugate of 
the coefficients of y.  

Hence the Result.  
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