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ABSTRACT

This paper presents the comparative study of compact mapping and Hilbert space. Here, we denote the scalar product of two elements (x, y)
of a (real or complex) Hilbert space by (x, y). Here, it is proved in this paper that the comparative study of compact mapping and Hilbert
space is the resultant of the spectral theory of compact symmetric operator.
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1. INTRODUCTION

Hall (1) and Kothe (2,3) are the pioneer worker of the
present area . In fact , the present work is the extension of
work done by Wong , Yau- Chuen (11) , Prasad, B; et al . (4),
Srivastava et al. (5), Srivastava et al. (6) , Srivastava et al .(7),
Srivastava, et al. (8), Srivastava et al.(9) and Srivastava et al.
(10). In this paper we have studied Comparability about
compact mapping and Hilbert Space.

Here , we use the following definitions, Notations and
Fundamental ideas :

If M and N are subspaces of a Linear space X such that
every xeX can be written uniquely as x =y + z where y €
M & z eN then the direct sum of M and N can also be
written X= M @& N where N is called complimentary
subspace of M in X and if M n N = {0 }, the
decomposition x =y + z is unique.

A given subspace M has many complimentary
subspaces and every complimentary subspace of M has
the same dimension and the dimension of a
complimentary subspace is called co-dimension of M in X
,as if X = R3 and M is a plane through the origin then
any line through the origin that does not lie in M is a
complimentary subspace.

If X=M @& N then we define the projection P: X —» X
of X on to M along N by Px =y, where x = y+z withy €
M, Z eN which is Linear with ran P = M and ker P = N
satisfying P2 = P. This property characterizes projections
for which the following definitions and theorems follow:-

Definition 1: Any projection associated with a direct sum
decomposition of a projection on a Linear space X is a
linear map P:X — X such that P2 =P

Definition 2: An orthogonal projection on a Hilbert space
H is also a Linear mapping P:H — H satisfying P2 = P,
<Px,y>=<x, Py> forall x,y € H.

“An orthogonal projection is necessarily bounded.”
Theorem 1 : Let X be a linear space,

(i) If P:X — Xis a projection then X = ran P @ kerP

(i) If X =M @ N where M and N are Linear subspaces
of X then there is a projection P:X — X with ran P =
M and ker P = N.

Proof:
For (i) We show that x € ran P if x = Px

If x = Px then clearly x € ran P

If xe ran P then x = Py for some y € x

And since P2 = P which follows that Px = P2y = Py = x
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If x e ran P m kerP then x =Px & Px =0
So ran P n kerP = {0}. If x € X then

We have x = Px + (x- Px) ; where Px € ran P and (x -
Px) € kerP .

Since P (x- Px) = Px - P2x = Px -Px =0
Thus X =ranP @ kerP. ....................... (1.1)
Now for (ii)

We consider if X = M® N then x € N has unique
decomposition x = y+z with ye M & Z € N and Px =y
defines the required Projection.

In particular, in orthogonal subspaces while using
Hilbert Space, let us

Suppose that M is a closed subspace of Hilbert Space
H then by well-known property we have H = M® M* .
We call the projection of H on to M along M* the
orthogonal projection of H on to M.

If x=y+z and x1 = y1 + 2zt wherey, y1 € M and z, z; €
M* then by orthogonality of M and M* = <Px, x;> = <y,
Y1 +z1> = <y, yl> = <y+z, yl>

=<, Px1> (1.2)

Which states that an orthogonal projection is self
Adjoint. We show the properties (1.1) and (1.2)
characterize orthogonal projections with Defn-2 .

Lemma :- If P is a non zero orthogonal projection then
I PII=T1.

Proof : - If x € H and Px # 0 then by Cauchy Schwarz
inequality ,
[[Px|| = <Px, Px> = <x,P2x> = <x, Px><| x|
I Px |l [ Px|] [ Px |

Therefore || P || <1.If P # 0 then there is an x eH with
Px #0and || P(Px) | = Px|| so that| P||=1.

Thus, the Orthogonal Projection P and closed subspace
M of H such that ran P = M will must obey one -
correspondence, then the kernel of Orthogonal Projection
is the Orthogonal Complement of M.

Example .1 - The space L2 (R) is the Orthogonal direct
sum of space M of even functions and the space N of odd
functions .The Orthogonal Projection P and Q of H onto
M and N, respectively are given by

Pf(x)= £(x)+f(-x) ,Qf(x)=£(x)-f(-x)
2 2

WhereI-P=Q.
Proposition:

(a) A Linear functional on a Complex Hilbert space H is

a Linear map from H to C. A Linear functional ¢ is
bounded or continuous, if there exists a constant M such

that | @ (x) | <M || x || forall x € H.

The norm of bounded linear functional ¢ is

o ll=suplp (x)|

[x =1

If y € Hthen ¢y (x) =<y, x> is a bounded Linear
functional on H, with

oyl =1yl

(b) If ¢ is a bounded Linear functional on a Hilbert space
H, then there is a unique vector y € H such that

0 (x)=<y, x> forall x e H

Theorem.2: (Riesz representation) If ¢ is a bounded linear
functional on a Hilbert space H, then there is a unique
vector y € H such that

forall xeH. .............. (2.1)

¢ (x) =<y, x>

Proof. If =0, theny =0, so we suppose that ¢ # 0. In
that case , ker ¢ is a proper closed subspace of H. and , it
implies that , there is a nonzero vector

ze H such that z L ker¢. We define a linear map P: H
—H by

Px =9 (x) /¢ (z) z

Then P2 = P, so Theorem 1 implies that , H =ran P @
kerP. Moreover,

ran P ={az | aeC}, kerP = kero

So that ran P L ker P . It follows that P is an orthogonal
projection, and

H ={az | aeC} ® kerg is an orthogonal direct sum. We
can therefore write

x €e Has x=az +n, aeCand n € kero.

Taking the inner product of this decomposition with z,
we get

a =<1z x >/II z1I2, and evaluating ¢ on x =az+n,
we find that

¢ (x)=ae (2.

The elimination a from these equations, and a
rearrangement of the result

yields ¢ (x) =<y, x>, wherey = (p_(z)/H z112.z .

Thus, every bounded linear functional is given by the
inner product with a fixed vector. We have already, seen
that @y (x) = <y, x > defines a bounded linear functional
on H for every y € H . To prove that there is a unique y
in H associated with a given linear functional, suppose
that @y1 = ¢y2 . Then ¢yi(y) = @y2(y). When y= yi- y> ,
which implies that [l y; - y2112 =0,s0y1 =y2 .

The Map J: HH>H* given by ]y =gy , therefore identifies
a Hilbert space H with its dual space H*. The norm of ¢y
is equal to the norm of y, so j is an isometry.
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In this case of complex Hilbert spaces, ] is antilinear,
rather than linear, because @i, = A@y,. Thus, Hilbert
spaces are self - dual, meaning that H and H* are
isomorphic as Banach spaces, and anti-isomorphic as
Hilbert spaces. Thus Hilbert spaces are special in this
respect. This completes the proof of the Theorem 2.

Proposition: (¢) An important consequences of the Riesz
representation theorem is the existence of the adjoint of a
bounded linear operator on a Hilbert space . The defining
property of the adjoint A* € B(H) of an operator A €
B(H) is that

<x, Ay > =<A*x,y > forallx,y e H........ (2.2)

The Uniqueness of A* is obvious. The definition
implies that

(A*)* = A, (AB)* = B*A*,

To prove that A* exists, we have to show that for every
xeH, there is a vector

zeH , depending linearly on x such that

<z,y>=<x,Ay> forally e H .............. (2.3)

For fixed x , the map ¢« defined by, ¢« (y) = <x, Ay >

is a bounded linear functional on H , with eIl < ITAII
IIxIT . By the Riesz representation Theorem, there is a
unique z € H such that ¢, (y) = < z, y > . This z satisfies
(2.3), So we get A*x = z . The linearity of A* follows from
the uniqueness in the Riesz representation theorem and
the linearity of the inner product .

Thus, from above definitions, Theorems, Leema,
example, Propositions (a), (b), & (C), which shows the
proof of the main result as “the representation of
compact mappings of Hilbert Spaces is a Consequence of
the Spectral theory of Compact symmetric operators.

1) Let Hy, H> be Hilbert spaces , Ae £ (Hi,Hy) compact
and not of finite rank . Then, there exists orthonormal

systems, e,, n=1,2,.......... InHjand {f, }, n=1,2,........
in H; such that
[oe]
2) Ax=2Z Ay (X, en) fn, x € Hi whereA,>0and \,— 0.
n=1

Proof: - Since A is Compact, A*A is Compact too and positive,
where A* denotes the adjoint in the sense of the scalar
product . It follows from Spectral theory that there exists an
orthonormal sequence of eigen vectors en, n=1,2,3,........ and
eigen values A2 >0, A2 —0 such that

o0
A* A =Z A2 (X, en) en,
n=1

A*A is zero on the orthonormal or complement H of the
closed subspace spanned by all the e, . But then A is zero too
on H.

Take y € H and suppose Ay 1 0.

Then (Ay, Ay) = (y, A*Ay ) + 0. But this would imply A*A, 10,
Therefore we have a representation

o0
Ac=Z A (X, en) Aen
n=1
We now define
fn =(1/ M)A en. Then
o0
A=Z A\ (X €n) fn
n=1
and other proposition will be proved if we Show that { f, } is
an orthonormal systems.

But (fi fx) = (Al Aei, Mt A ex)

=N 1A (A*Aeyex )

= N1 At (A2e, ex )

=5y
(3) Conversely every mapping A e £(H;Hz) which has a
representation (2) with

An> 0, Ay —0 is compact.

K
Let Akbe X An(X, en)fn, II(A-Aq)x 112
n=1
o0
SZA2I(x,en)l?
n=k+1

<e2llx112,itis | A\yI<e for n>k(e).

Thus A is compact as the limit of A, in £, (H;, Hz) . From
this proof and (1) follow immediately.

(4). Let Hy, H» be Hilbert Spaces. Then every compact A €
£, (Hi, Hpy is the limit of a sequence of mappings of finite
rank.

Then A, of (2) are called the singular values of A and the
non- increasing sequence of all singular values of A is
uniquely determined by A , the representation (2) can be
written in a different way using linear forms instead of scalar
product for the coefficients of the f, .

The scalar product (x,y) in Hilbert space H is linear in x for
y fixed , thus it defines a linear functional, < V,x >= (xy),
where ¥ is uniqually determined . One calls ¥ the Conjugate
element to y. There exists an Orthonormal basis {eq }, a € A,
of H such that

For x=X&seqy

a

=X MNa€a

a

(x,y)=2§a1;a= <y,x >

a
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Since this is true for all x e H, if follows that
YV =Zmnaea:

the coefficients of ¥ are the Conjugate of
the coefficients of y.

Hence the Result.
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