
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Volume-08, Number-03, 2015

www.ijspr.com IJSPR | 114

A Review on IEEE-754 Floating Point Multiplier

Using Verilog

Prakhi Agrawal
1
, Prof. Shravan Sable

2
, Dr. Rita Jain

3

1
M-Tech

Research Scholar,

2
Research Guide,

3
HOD, Department of Electronics & Communication Engineering

Lakshmi Narain College of Technology, Bhopal,(M. P.)

Abstract- In this review paper we have presented a brief literature

review for FPGA based Floating Point Multiplier. FPGAs provide

good speedup outcomes while the retaining much of the flexibility

of a software solution at a fraction of the startup cost of an ASIC.

In the recent years, there has been a lot of work with the

logarithmic number system as a possible alternative to floating

point. Because of the complexity of floating point computations,

floating point operations are often part of these serious portions

and so these are good for implementation to obtain speedup of a

system. Current technology provides two major options for

implementations. These are the application specific integrated

circuit and the field programmable gate array.

Keywords- ASIC, FPGA,IEEE-754. Double precision, Floating

point, Multiplier.

I. INTRODUCTION

Floating-point units (FPU) are a math coprocessor which is

designed specially to carry out operations on floating point

numbers [1]. Typically FPUs can handle operations like

addition, subtraction, multiplication and division. FPUs can

also perform various transcendental functions such as

exponential or trigonometric calculations, though these are

done with software library routines in most modern

processors. Our FPU is basically a single precision IEEE754

compliant integrated unit.

Floating Point Unit

When a CPU executes a program that is calling for a

floating-point (FP) operation, there are three ways by which

it can carry out the operation. Firstly, it may call a floating-

point unit emulator, which is a floating-point library, using a

series of simple fixed-point arithmetic operations which can

run on the integer ALU. These emulators can save the added

hardware cost of a FPU but are significantly slow. Secondly,

it may use an add-on FPUs that are entirely separate from the

CPU, and are typically sold as an optional add-ons which are

purchased only when they are needed to speed up math-

intensive operations. Else it may use integrated FPU present

in the system [2].

The FPU designed by us is a single precision IEEE754

compliant integrated unit. It can handle not only basic

floating point operations like addition, subtraction,

multiplication and division but can also handle operations

like shifting, square root determination and other

transcendental functions like sine, cosine and tangential

function.

Fig. 1 Single & Double Precision Floating point representation

IEEE 754 Standards

IEEE754 standard is a technical standard established by

IEEE and the most widely used standard for floating-point

computation, followed by many hardware (CPU and FPU)

and software implementations [3]. Single-precision floating-

point format is a computer number format that occupies 32

bits in a computer memory and represents a wide dynamic

range of values by using a floating point. In IEEE 754-2008,

the 32-bit with base 2 format is officially referred to as single

precision or binary32. It was called single in IEEE 754-1985.

The IEEE 754 standard specifies a single precision number

as having sign bit which is of 1 bit length, an exponent of

width 8 bits and a significant precision of 24 bits out of

which 23 bits are explicitly stored and 1 bit is implicit 1.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Volume-08, Number-03, 2015

www.ijspr.com IJSPR | 115

Sign bit determines the sign of the number where 0 denotes a

positive number and 1 denotes a negative number. It is the

sign of the mantissa as well. Exponent is an 8 bit signed

integer from −128 to 127 (2's Complement) or can be an 8 bit

unsigned integer from 0 to 255 which is the accepted biased

form in IEEE 754 single precision definition. In this case an

exponent with value 127 represents actual zero. The true

mantissa includes 23 fraction bits to the right of the binary

point and an implicit leading bit (to the left of the binary

point) with value 1 unless the exponent is stored with all

zeros. Thus only 23 fraction bits of the mantissa appear in

the memory format but the total precision is 24 bits.

For example:

𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 31 30 23 22 0

IEEE754 also defines certain formats which are a set of

representation of numerical values and symbols. It may also

include how the sets are encoded.

The standard defines [4]:

 Arithmetic formats which are sets of binary and decimal

floating-point numbers, which consists of finite numbers

including subnormal number and signed zero, a special

value called "not a number” (NaN) and infinity.

 Interchange formats which are bit strings (encodings)

that are used to exchange a floating-point data in a

compact and efficient form.

 Rounding rules which are the properties that should be

satisfied while doing arithmetic operations and

conversions of any numbers on arithmetic formats.

 Exception handling which indicates any exceptional

conditions similarly division by zero, underflow and

overflow. occurred during the operations.

The standard defines five rounding rules:

 Round to the nearest even which rounds to the nearest

value with an even (zero) least significant bit.

 Round to the nearest odd which rounds to the nearest

value above (for positive numbers) or below (for

negative numbers)

 Round towards positive infinity which is a rounding

directly towards a positive infinity and it is also called

rounding up or ceiling.

 Round towards negative infinity which is rounding

directly towards a negative infinity and it is also called

rounding down or floor or truncation.

The standard also defines five exceptions, and all of them

return a default value. They all have a corresponding status

flag which are raised when any exception occurs, except in

certain cases of underflow.

The five possible stages are:

 Invalid operation are like square root of a negative

number, returning of not a number” qNaN by default,

etc., output of which does not exist.

 Division by zero is an operation on a finite operand

which gives an exact infinite result 1/0 or log(0) that

returns positive or negative infinity by default.

 Overflow occurs when an operation results a very large

number that can’t be represented correctly i.e. which

returns ± infinity by default (for round-to-nearest mode).

 Underflow occurs when an operation results very small

i.e. outside the normal range and inexact (de-normalized

value) by default.

 Inexact occurs when any operation returns correctly

rounded result by default.

II. MULTIPLICATION ALGORITHM

Multiplication of negative number using 2‟s complement is

more complicated than multiplication of a positive number.

This is because performing a straightforward unsigned

multiplication of the 2's complement representations of the

inputs does not give the correct result. Multiplication can be

designed in such that it first converts all their negative inputs

to positive quantities and use the sign bit of the original

inputs to determine the sign bit of the result. But this

increases the time required to perform a multiplication, hence

decreasing the efficiency of the whole FPU. Here initially the

Bit Pair Recoding algorithm which increases the efficiency

of multiplication by pairing. To further increase the

efficiency of the algorithm and decrease the time complexity.

Multiplication Using Bit Pair Recoding

This technique divides the maximum number of summands

into two halves. It is directly derived from the Booth‟s

algorithm [9]. It basically works on the principle of finding

the cumulative effect of two bits of the multiplier at positions

i and i+1 when performed at position i. This is further

clarified in the following table.

III. LITERATURE REVIEW

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Volume-08, Number-03, 2015

www.ijspr.com IJSPR | 116

Kodali, R.K., Gundabathula, S.K. and Boppana, L

investigated the floating point arithmetic, specifically

multiplication, is a widely used computational operation in

many scientific and signal processing applications. In

general, the IEEE-754 single-precision multiplier requires a

23 × 23 mantissa multiplication and the double-precision

multiplier requires a large 52 × 52 mantissa multiplier to

obtain the final result. This computation exists as a limit on

both area and performance bounds of this operation. A lot of

multiplication algorithms have been developed during the

past decades. In this research, the two of the popular

algorithms, namely, Booth and Karatsuba (Normal and

Recursive) multipliers have been implemented, and a

performance comparison is also made. The algorithms have

been implemented on an uniform reconfigurable FPGA

platform providing a comparison of FPGA resources utilized

and execution speeds. The recursive Karatsuba is the best

performing algorithm among the algorithms.

Hang Zhang, Wei Zhang, Lach, J. proposed a low-power

accuracy-configurable floating point multiplier based on

Mitchell's Algorithm. Post-layout SPICE simulations in a

45nm process show same-delay power reductions up to 26X

for single precision and 49X for double precision compared

to their IEEE-754 counterparts. Functional simulations on six

CPU and GPU benchmarks show significantly better power

reduction vs. quality degradation trade-offs than existing bit

truncation schemes.

Ramesh, A.P., Tilak, A.V.N. and Prasad, A.M. researched on

the Floating Point multiplication is widely used in large set

of scientific and signal processing computation.

Multiplication is one of the common arithmetic operations in

these computations. A high speed floating point double

precision multiplier is implemented on a Virtex-6 FPGA. In

addition, the proposed design is compliant with IEEE-754

format and handles over flow, under flow, rounding and

various exception conditions. The design achieved the

operating frequency of 414.714 MHz with an area of 648

slices.

Sheikh, B.R., Manohar and R. presented the details of our

energy-efficient asynchronous floating-point multiplier

(FPM). Authors discussed design trade-offs of various

multiplier implementations. A higher radix array multiplier

design with operand-dependent carry-propagation adder and

low handshake overhead pipeline design is presented, which

yields significant energy savings while preserving the

average throughput. Our FPM also includes a hardware

implementation of denormal and underflow cases. When

compared against a custom synchronous FPM design, our

asynchronous FPM consumes 3X less energy per operation

while operating at 2.3X higher throughput. To our

knowledge, this is the first detailed design of a high-

performance asynchronous IEEE-754 compliant double-

precision floating-point multiplier.

Su Bo, Wang Zhiying and Huang Libo expanded the large

computing platforms and the increasing of on chip

transistors, power consumption becomes a significant

problem. Many methods are proposed in different design

levels to solve the problem. In this paper, researchers

introduce asynchronous technique to an IEEE-754 double-

precision floating-point multiplier aiming to reduce its power

consumption. The control path of the asynchronous

multiplier employs redundant four-phase latch controllers

and asymmetric delay elements. Experimental results show

the power consumption of the asynchronous multiplier is at

least 16% lower than its synchronous equivalent when

running the PARSEC benchmarks. After synthesized in

UMC 180nm technology, the area overhead of the

asynchronous multiplier is 0.31%.

IV. PROPOSED METHODOLOGY

Floating-point calculation is analyzed to be an esoteric

subject in the field of Computer Science [5]. This is

obviously surprising, because floating-point is omnipresent

in computer systems. Floating-point (FP) data type is almost

present in every language. From PCs to supercomputers, all

have FP accelerators in them. Most compilers are called from

time to time to compile the floating-point algorithms and

virtually every OS have to respond to all FP exceptions

during operations such as overflow. Also FP operations have

a direct effect on designs as well as designers of computer

systems. So it is very important to design an efficient FPU

such that the computer system becomes efficient. Further,

FPU can be improvised by using efficient algorithm for the

basic as well as transcendental functions, which can be

handled by any FPU, with reduced complexity of the logic

used. This FPU further can be worked upon to improvise

further complex operations-viz. exponent. It can be designed

so that it can handle different data types like character,

strings etc, can serve as a backbone for designing a fault

tolerant IEEE754 compliant FPU on higher grounds and such

that pipeline can be implemented.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Volume-08, Number-03, 2015

www.ijspr.com IJSPR | 117

For efficient FPU for different kind of operations, the

objective of proposed work is as follows:

 To develop an efficient algorithms for FP operations

like addition, subtraction, division, multiplication

and few transcendental functions.

 To implement the proposed scheme using Verilog.

 To synthesize the above proposed algorithm.

V. CONCLUSION & FUTURE WORK

The algorithm for the FPU is comparable in some case other

are efficient algorithms like in the same case of block CLA

and CLA in terms of delay, memory used, and device

utilization. Since the FPU using possible efficient algorithms

with several changes incorporated at our ends as far as the

scope permitted, all the unit functions are unique in certain

aspects and given the right environment these functions will

tend to show comparable efficiency and speed and if

pipelined then higher throughput may be obtained. We

briefly studied the meaning of FPU and the IEEE 754

standard, different rounding modes, arithmetic formats,

exceptions and interchange formats. This analysis gives an

overview about the motivation and the objective of proposed

methodology. It has been also studied the efficient algorithm

to enhance the operation of the FPU. FPU have less delay,

less memory requirement, low code complexity, comparable

clock cycle and but still a vast amount of work that can be

put on this FPU to additional improvise the efficiency of the

FPU. Further implement operations like Exponential

functions and Logarithmic functions can be used.

REFERENCES

[1] Kodali, R.K.; Gundabathula, S.K.; Boppana, L., "FPGA

implementation of IEEE-754 floating point Karatsuba

multiplier," Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), 2014 International

Conference on , vol., no., pp.300,304, 10-11 July 2014.

[2] Hang Zhang; Wei Zhang; Lach, J., "A low-power accuracy-

configurable floating point multiplier," Computer Design

(ICCD), 2014 32nd IEEE International Conference on , vol.,

no., pp.48,54, 19-22 Oct. 2014.

[3] Ramesh, A.P.; Tilak, A.V.N.; Prasad, A.M., "An FPGA based

high speed IEEE-754 double precision floating point

multiplier using Verilog," Emerging Trends in VLSI,

Embedded System, Nano Electronics and Telecommunication

System (ICEVENT), 2013 International Conference on , vol.,

no., pp.1,5, 7-9 Jan. 2013.

[4] Sheikh, B.R.; Manohar, R., "An Asynchronous Floating-Point

Multiplier," Asynchronous Circuits and Systems (ASYNC),

2012 18th IEEE International Symposium on , vol., no.,

pp.89,96, 7-9 May 2012.

[5] Su Bo; Wang Zhiying; Huang Libo; Shi Wei; Wang Yourui,

"Reducing Power Consumption of Floating-Point Multiplier

via Asynchronous Technique," Computational and

Information Sciences (ICCIS), 2012 Fourth International

Conference on , vol., no., pp.1360,1363, 17-19 Aug. 2012.

[6] Manolopoulos, K.; Reisis, D.; Chouliaras, V.A., "An efficient

multiple precision floating-point multiplier," Electronics,

Circuits and Systems (ICECS), 2011 18th IEEE International

Conference on , vol., no., pp.153,156, 11-14 Dec. 2011.

[7] Jinwoo Suh, Dong-In Kang, and Stephen P. Crago, “Efficient

Algorithms for Fixed-Point Arithmetic Operations In An

Embedded PIM”, 2005, University of Southern

California/Information Sciences Institute.

[8] David Narh Amanor, “Efficient Hardware Architectures for

Modular Multiplication”, Communication and Media

Engineering, February, 2005, University of Applied Sciences

Offenburg, Germany/

[9] Andre Weimerskirch and Christof Paar, “Generalizations of

the Karatsuba Algorithm for Efficient Implementations”,

Communication Security Group, Department of Electrical

Engineering & Information Sciences, Ruhr-UniversitÄat

Bochum, Germany

[10] Yamin Li and Wanming Chu, “A New Non-Restoring Square

Root Algorithm and Its VLSI Implementations”, International

Conference on Computer Design (ICCD‟96), October 7–9,

1996, Austin, Texas, USA

[11] Claude-Pierre Jeannerod, Herv´e nochel, Christophe Monat,

Member, IEEE, and Guillaume Revy, “Faster floating-point

square root for integer processors”, Laboratoire LIP (CNRS,

ENSL, INRIA, UCBL)

[12] Prof. Kris Gaj, Gaurav, Doshi, Hiren Shah, “Sine/Cosine

using CORDIC Algorithm”

[13] Samuel Ginsberg, “Compact and Efficient Generation of

Trigonometric Functions using a CORDIC algorithm”, Cape

Town, South Africa

[14] J. Duprat and J. M. Muller, “The CORDIC Algorithm: New

Results for fast VLSI Implementation”, IEEE Transactions on

Computers, vol. C-42, pp. 168 178, 1993

