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Abstract- In this review paper we have presented a brief literature 

review for FPGA based Floating Point Multiplier. FPGAs provide 

good speedup outcomes while the retaining much of the flexibility 

of a software solution at a fraction of the startup cost of an ASIC. 

In the recent years, there has been a lot of work with the 

logarithmic number system as a possible alternative to floating 

point. Because of the complexity of floating point computations, 

floating point operations are often part of these serious portions 

and so these are good for implementation to obtain speedup of a 

system. Current technology provides two major options for 

implementations. These are the application specific integrated 

circuit and the field programmable gate array. 
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I. INTRODUCTION 

Floating-point units (FPU) are a math coprocessor which is 

designed specially to carry out operations on floating point 

numbers [1]. Typically FPUs can handle operations like 

addition, subtraction, multiplication and division. FPUs can 

also perform various transcendental functions such as 

exponential or trigonometric calculations, though these are 

done with software library routines in most modern 

processors. Our FPU is basically a single precision IEEE754 

compliant integrated unit.  

 

Floating Point Unit  

When a CPU executes a program that is calling for a 

floating-point (FP) operation, there are three ways by which 

it can carry out the operation. Firstly, it may call a floating-

point unit emulator, which is a floating-point library, using a 

series of simple fixed-point arithmetic operations which can 

run on the integer ALU. These emulators can save the added 

hardware cost of a FPU but are significantly slow. Secondly, 

it may use an add-on FPUs that are entirely separate from the 

CPU, and are typically sold as an optional add-ons which are 

purchased only when they are needed to speed up math-

intensive operations. Else it may use integrated FPU present 

in the system [2].  

 

The FPU designed by us is a single precision IEEE754 

compliant integrated unit. It can handle not only basic 

floating point operations like addition, subtraction, 

multiplication and division but can also handle operations 

like shifting, square root determination and other 

transcendental functions like sine, cosine and tangential 

function. 

 
Fig. 1 Single & Double Precision Floating point representation 

 

IEEE 754 Standards  

IEEE754 standard is a technical standard established by 

IEEE and the most widely used standard for floating-point 

computation, followed by many hardware (CPU and FPU) 

and software implementations [3]. Single-precision floating-

point format is a computer number format that occupies 32 

bits in a computer memory and represents a wide dynamic 

range of values by using a floating point. In IEEE 754-2008, 

the 32-bit with base 2 format is officially referred to as single 

precision or binary32. It was called single in IEEE 754-1985. 

The IEEE 754 standard specifies a single precision number 

as having sign bit which is of 1 bit length, an exponent of 

width 8 bits and a significant precision of 24 bits out of 

which 23 bits are explicitly stored and 1 bit is implicit 1. 
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Sign bit determines the sign of the number where 0 denotes a 

positive number and 1 denotes a negative number. It is the 

sign of the mantissa as well. Exponent is an 8 bit signed 

integer from −128 to 127 (2's Complement) or can be an 8 bit 

unsigned integer from 0 to 255 which is the accepted biased 

form in IEEE 754 single precision definition. In this case an 

exponent with value 127 represents actual zero. The true 

mantissa includes 23 fraction bits to the right of the binary 

point and an implicit leading bit (to the left of the binary 

point) with value 1 unless the exponent is stored with all 

zeros. Thus only 23 fraction bits of the mantissa appear in 

the memory format but the total precision is 24 bits. 

 

For example:  

𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹   

   31 30           23 22                                                  0 

IEEE754 also defines certain formats which are a set of 

representation of numerical values and symbols. It may also 

include how the sets are encoded.  

The standard defines [4]:  

 Arithmetic formats which are sets of binary and decimal 

floating-point numbers, which consists of finite numbers 

including subnormal number and signed zero, a special 

value called "not a number” (NaN) and infinity.  

 Interchange formats which are bit strings (encodings) 

that are used to exchange a floating-point data in a 

compact and efficient form.  

 Rounding rules which are the properties that should be 

satisfied while doing arithmetic operations and 

conversions of any numbers on arithmetic formats.  

 Exception handling which indicates any exceptional 

conditions similarly division by zero, underflow and 

overflow. occurred during the operations.  

 

The standard defines five rounding rules:  

 Round to the nearest even which rounds to the nearest 

value with an even (zero) least significant bit.  

 Round to the nearest odd which rounds to the nearest 

value above (for positive numbers) or below (for 

negative numbers)  

 Round towards positive infinity which is a rounding 

directly towards a positive infinity and it is also called 

rounding up or ceiling.  

 Round towards negative infinity which is rounding 

directly towards a negative infinity and it is also called 

rounding down or floor or truncation.  

 

The standard also defines five exceptions, and all of them 

return a default value. They all have a corresponding status 

flag which are raised when any exception occurs, except in 

certain cases of underflow. 

 

The five possible stages are:  

 Invalid operation are like square root of a negative 

number, returning of not a number” qNaN by default, 

etc., output of which does not exist.  

 Division by zero is an operation on a finite operand 

which gives an exact infinite result 1/0 or log(0) that 

returns positive or negative infinity by default.  

 Overflow occurs when an operation results a very large 

number that can’t be represented correctly i.e. which 

returns ± infinity by default (for round-to-nearest mode).  

 Underflow occurs when an operation results very small 

i.e. outside the normal range and inexact (de-normalized 

value) by default.  

 Inexact occurs when any operation returns correctly 

rounded result by default.  

 

II. MULTIPLICATION ALGORITHM 

Multiplication of negative number using 2‟s complement is 

more complicated than multiplication of a positive number. 

This is because performing a straightforward unsigned 

multiplication of the 2's complement representations of the 

inputs does not give the correct result. Multiplication can be 

designed in such that it first converts all their negative inputs 

to positive quantities and use the sign bit of the original 

inputs to determine the sign bit of the result. But this 

increases the time required to perform a multiplication, hence 

decreasing the efficiency of the whole FPU. Here initially the 

Bit Pair Recoding algorithm which increases the efficiency 

of multiplication by pairing. To further increase the 

efficiency of the algorithm and decrease the time complexity. 

 

Multiplication Using Bit Pair Recoding  

This technique divides the maximum number of summands 

into two halves. It is directly derived from the Booth‟s 

algorithm [9]. It basically works on the principle of finding 

the cumulative effect of two bits of the multiplier at positions 

i and i+1 when performed at position i. This is further 

clarified in the following table. 

 

III. LITERATURE REVIEW 
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Kodali, R.K., Gundabathula, S.K. and Boppana, L 

investigated the floating point arithmetic, specifically 

multiplication, is a widely used computational operation in 

many scientific and signal processing applications. In 

general, the IEEE-754 single-precision multiplier requires a 

23 × 23 mantissa multiplication and the double-precision 

multiplier requires a large 52 × 52 mantissa multiplier to 

obtain the final result. This computation exists as a limit on 

both area and performance bounds of this operation. A lot of 

multiplication algorithms have been developed during the 

past decades. In this research, the two of the popular 

algorithms, namely, Booth and Karatsuba (Normal and 

Recursive) multipliers have been implemented, and a 

performance comparison is also made. The algorithms have 

been implemented on an uniform reconfigurable FPGA 

platform providing a comparison of FPGA resources utilized 

and execution speeds. The recursive Karatsuba is the best 

performing algorithm among the algorithms. 

 

Hang Zhang, Wei Zhang, Lach, J. proposed a low-power 

accuracy-configurable floating point multiplier based on 

Mitchell's Algorithm. Post-layout SPICE simulations in a 

45nm process show same-delay power reductions up to 26X 

for single precision and 49X for double precision compared 

to their IEEE-754 counterparts. Functional simulations on six 

CPU and GPU benchmarks show significantly better power 

reduction vs. quality degradation trade-offs than existing bit 

truncation schemes. 

Ramesh, A.P., Tilak, A.V.N. and Prasad, A.M. researched on 

the Floating Point multiplication is widely used in large set 

of scientific and signal processing computation. 

Multiplication is one of the common arithmetic operations in 

these computations. A high speed floating point double 

precision multiplier is implemented on a Virtex-6 FPGA. In 

addition, the proposed design is compliant with IEEE-754 

format and handles over flow, under flow, rounding and 

various exception conditions. The design achieved the 

operating frequency of 414.714 MHz with an area of 648 

slices. 

Sheikh, B.R., Manohar and R. presented the details of our 

energy-efficient asynchronous floating-point multiplier 

(FPM). Authors discussed design trade-offs of various 

multiplier implementations. A higher radix array multiplier 

design with operand-dependent carry-propagation adder and 

low handshake overhead pipeline design is presented, which 

yields significant energy savings while preserving the 

average throughput. Our FPM also includes a hardware 

implementation of denormal and underflow cases. When 

compared against a custom synchronous FPM design, our 

asynchronous FPM consumes 3X less energy per operation 

while operating at 2.3X higher throughput. To our 

knowledge, this is the first detailed design of a high-

performance asynchronous IEEE-754 compliant double-

precision floating-point multiplier. 

Su Bo, Wang Zhiying and Huang Libo expanded the large 

computing platforms and the increasing of on chip 

transistors, power consumption becomes a significant 

problem. Many methods are proposed in different design 

levels to solve the problem. In this paper, researchers 

introduce asynchronous technique to an IEEE-754 double-

precision floating-point multiplier aiming to reduce its power 

consumption. The control path of the asynchronous 

multiplier employs redundant four-phase latch controllers 

and asymmetric delay elements. Experimental results show 

the power consumption of the asynchronous multiplier is at 

least 16% lower than its synchronous equivalent when 

running the PARSEC benchmarks. After synthesized in 

UMC 180nm technology, the area overhead of the 

asynchronous multiplier is 0.31%. 

IV. PROPOSED METHODOLOGY 

Floating-point calculation is analyzed to be an esoteric 

subject in the field of Computer Science [5]. This is 

obviously surprising, because floating-point is omnipresent 

in computer systems. Floating-point (FP) data type is almost 

present in every language. From PCs to supercomputers, all 

have FP accelerators in them. Most compilers are called from 

time to time to compile the floating-point algorithms and 

virtually every OS have to respond to all FP exceptions 

during operations such as overflow. Also FP operations have 

a direct effect on designs as well as designers of computer 

systems. So it is very important to design an efficient FPU 

such that the computer system becomes efficient. Further, 

FPU can be improvised by using efficient algorithm for the 

basic as well as transcendental functions, which can be 

handled by any FPU, with reduced complexity of the logic 

used. This FPU further can be worked upon to improvise 

further complex operations-viz. exponent. It can be designed 

so that it can handle different data types like character, 

strings etc, can serve as a backbone for designing a fault 

tolerant IEEE754 compliant FPU on higher grounds and such 

that pipeline can be implemented.  
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For efficient FPU for different kind of operations, the 

objective of proposed work is as follows:  

 To develop an efficient algorithms for FP operations 

like addition, subtraction, division, multiplication 

and few transcendental functions.  

 To implement the proposed scheme using Verilog.  

 To synthesize the above proposed algorithm.  

 

V. CONCLUSION & FUTURE WORK  

The algorithm for the FPU is comparable in some case other 

are efficient algorithms like in the same case of block CLA 

and CLA in terms of delay, memory used, and device 

utilization. Since the FPU using possible efficient algorithms 

with several changes incorporated at our ends as far as the 

scope permitted, all the unit functions are unique in certain 

aspects and given the right environment these functions will 

tend to show comparable efficiency and speed and if 

pipelined then higher throughput may be obtained. We 

briefly studied the meaning of FPU and the IEEE 754 

standard, different rounding modes, arithmetic formats, 

exceptions and interchange formats. This analysis gives an 

overview about the motivation and the objective of proposed 

methodology. It has been also studied the efficient algorithm 

to enhance the operation of the FPU. FPU have less delay, 

less memory requirement, low code complexity, comparable 

clock cycle and but still a vast amount of work that can be 

put on this FPU to additional improvise the efficiency of the 

FPU. Further implement operations like Exponential 

functions and Logarithmic functions can be used.  
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