
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 127

Efficient Synchronization of files between Digital
Safes

1Vani H U , 2Swathi V S,3Spoorthi U K, 4Shwetha S, 5Namitha A R
1234UG Students, 5Assistant professor

Department of Computer Science and Engineering

BGS Institute of Technology , BG Nagar

Abstract-Cloud storage offer the availability to the end user.
Thus, addressing the mobility needs and device's variety has
emerged as a major challenge. Data should be synchronized
automatically and continuously when the user switch from one
device to another device. The owner should be offered the
service of sharing the data with any specific user by the cloud
service.

The goal of this paper is to develop a secure framework that
fortify file synchronization with high quality and least possible
resource consumption. As a step towards this intention, we
advance the SyncDS protocol with its associated architecture.
The synchro-nization protocol efficiency raises through the
choice of the used networking protocol as well as the strategy of
changes detection between two versions of file systems located
in different devices. Our try out results show that acquiring the
Hierarchical Hash Tree to notice the changes between two files
and validate the WebSocket protocol for the data exchanges
improve the efficiency of the synchronization protocol.

Index Terms-File synchronization, Digital Safe, HTML5 Local
Storage API, WebSocket, Hierarchical Hash Tree, Web
services.

I. INTRODUCTION

With the invasion of used smart objects, the cross-device
data management remains the concern of multiple research
and industrial works. Several Cloud storage solutions are
proposed to handle this issue. However, the
commercialized products are usually based on proprietary
solutions. They obviously lack transparency for the users
how their data are managed in the client and Cloud side.
These closed solutions depend heavily on the used
machine. Cloud file syncing’s popularity has risen due to
number of employees working remotely, telecommuting,
or travelling, who need access to certain files. To meet this
need, businesses turn to cloud file syncing services. Like
typical cloud storage, cloud file syncing services work in
either public or private environments. Hybrid
environments are also an option.[1]

+Adding the probative value into the Cloud storage tends
to guarantee the proof of the storage actions performed by
the users. A standardized Cloud storage solution with the
proba¬tive value is introduced by the Safe Box As A
Service (SBaaS) [1]. It is a standardized architecture that
provides a secure environment to store sensitive
documents. The conception of this safe follows the

AFNOR specifications [2]. It is a standard that offers the
best possible security, integrity and quality to preserve
user’s data. It is characterized by its probative value as a
proof of storage is preserved in a third trusted party.

Introducing the synchronization in a Digital Safe platform
implies the definition of a Client Digital Safe. In our
platform, the client safe is based on HTML5 APIs. The
major interest of using HTML5 is to avoid proprietary
solutions and to adopt standardized one. It offers also the
transparency to the end user and guaranties the mobility
and portability while preserving an efficient traffic
exchange. In this paper, we highlight the major need of
defining a standardized architecture for file
synchronization with efficiency considerations. First, we
focus on the synchronization between the Client Digital
Safe and the Cloud Digital Safe. Second, we address the
efficiency in this context by the choice of the used
networking protocol as well as the strategy of changes
detection between two versions of file systems.

The rest of the paper is structured as follows. In section 2,
we give an overview on data synchronization challenges.
In section 3, we present the synchronization architecture.
Section 4 addresses the Digital Safe synchronization
protocol (SyncDS) and the changes detection needed in the
synchro¬nization. We deal with the implementation in
section 5. We analyze then the performances of our
proposed protocol in section 6. We end up with a
conclusion and perspectives.

II. OVERVIEW ON SYNCHRONIZATION
PROTOCOLS

A. Efficient Synchronization protocol requirements

In the context of file synchronization, the protocol has to
provide four main key properties that should be respected
in order to guarantee an efficient bandwidth, the fastest
data exchange and an effective computation [3] [4] [5] [6]:

-Property 1: Low computation of the data and metadata at
the client side. This property adds the scalability and
enables simultaneous synchronization.

-Property 2: Efficient change detection between the file
system versions of the client and the server. The goal is to

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 128

reduce the time of matching and therefore, the time of
whole synchronization.

-Property 3: Reducing the number of synchronized files by
finding the maximum number of matched content.

-Property 4: Reducing the messages between the client and
the server.

B. Detecting changes in file systems

The different proposed change detection algorithms can be
classified into three main approaches (we consider that the
node A intends to send the changes performed on its file
system to the node B):

- operation Approach: This approach is based on recording
the different operations performed on the node A and
sending them to the remote node B [5]. These operations
are sent to the node B to update its replica. However,
storing the operation is a consumption of the storage
memory, unless a log merging is adopted such as the case
in[7], which reduce the used storage.

- Changes Approach: The main idea behind this approach
is to save a copy of the last synchronized file system
version (i.e. just before being offline). After a series of
modifications and when the user becomes online, the old
copy and the new version are compared. Actions are
therefore detected and sent to the remote node B [8]. This
approach proved its worth. However, it needs additional
storage space for archiving the file system. In addition,
there is a lack of automatic detection since it must be
triggered periodically. Otherwise, the change detection can
use operating system modules such as Inotify on Linux or
FSEvents API on Mac OS X. It is obvious that the
synchronization application will depend heavily on the
operating system.

- Differencing Approach: The node A sends an abstract of
its files and directories to the remote node. This abstract
includes some metadata of files. In the case of dropbox [9],
the metadata contains the object path, object type (files or
directories) and the hashs of 4Mb file’s blocks. In the case
of Rsync [10], it sends the hash of file blocks, and Taper
[3] sends the Hierarchical Hash Tree, the hash of file’s
chunks and the hash of file’s blocks. The node B,
therefore, compares its abstract with the one received from
A to detect the changes. It asks A then to send back
missing blocks of files. This approach cannot guarantee an
automatic synchronization and sending periodically the
abstract leads to an efficient bandwidth usage. In this case,
even the structure of the abstract should be well chosen to
guarantee a fast matching at the target. That is why we
introduce the HHT into the abstract structure. Taper
defines an algorithm to detect only the changes blocks in
each file of the filesystem. However, our approach and
proposed algorithm detect the changes in the whole

filesystem with the different operations performed by the
user such as, rename, copy, move, add, modify, etc.

Adopting the differencing approach leads to focus on
detect¬ing the changes between the abstract sent by node
A and the abstract of the node B. In the case of data
synchronization, the abstract consists of a part of file
system metadata. Speaking in terms of graph theory, a file
system can be modeled as a tree. Therefore, the metadata
of a file system can be organized to be modeled as a tree
structure. A tree is a rooted and ordered graph consisting
on nodes interconnected with a parent-child relationship.
In the file system context, the node that has a parent is
called a root which is the main directory of our file system.
However, nodes that have not child are the leafs which
matches to the files. Nodes in between are called inner
nodes. They represent the different directories of the file
system.

Many works are focusing on general problems of detecting
changes between documents, mostly flat files. For
example, Unix diff is one of the most popular change
detection utilities that use the Longest Common
Subsequence (LCS) algorithm to compare two files. We
find also the Concurrent Versions System (CVS) which
uses the diff algorithm to show the differences between
different revisions of a given program.

However, these two solutions cannot be generalized as
they do not understand the all structure of the data. Later,
structured document differencing algorithms were
proposed to fit the requirement of structured data for Latex
and nested-object documents such as LaDiff [11] and MH-
Diff [12] algorithm. Algorithms are proposed also for
XML documents such as diffX [13]. It is based on the
bottom-up mapping and the DOM-hash to reduce the size
of the trees to compare. Our change detection algorithm is
inspired from the diffX [13] algorithm, first because it
proved its worth in change detection compared to the other
solutions related to structured docu-ments. Second, it is
based on the tree structure considering a structure similar
to the Hierarchical Hash Tree.

C. Network protocols for file synchronization

Various networking protocols and architectures are used to
ensure data synchronization including both the notification
and the data transfer. In fact, a part of the infrastructure
sends messages to the concerned connected clients. It
notifies them that changes have occurred and the data
transfer for synchronization should start. For example,
Dropbox [9] uses the HTTP for the data transfer and the
long HTTP polling for the notification. Regarding Google
Chrome synchronization, the data transfer is also based on
HTTP and the notification exploits an existing XMPP-
based Google Talk server. REST API is also used to
ensure data replication in multiple solutions such as

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 129

CouchDB [15]. Indeed, RESTful applications are mainly
based on HTTP protocol.

Choosing the best protocol for the data exchange is very
important to the synchronization protocol efficiency. In
fact, it is crucial to reduce the amount and the size of
messages exchanged between the both end points. In this
paper, we address the introduction of the WebSocket API
and protocol in the architecture of synchronization.

III. OVERALL SYNCDS ARCHITECTURE

The goal of our framework is to ensure the data
synchronization between a Local Digital Safe and a Cloud
Digital Safe while considering the probative value. As a
first step, we need to define the architecture as well as the
messages exchanged between its different entities. The
architecture is divided into

Fig. 1. Digital Safe synchronization Architecture

- Client Storage Layer: The novelty in the
architecture is the non-proprietary characteristic. The data
are stored securely in a Local Digital Safe. This Safe is
based on the HTML5 Local Storage API with additional
security considerations. In fact, we add into the existent
APIs the confidentiality by encrypting the data locally, the
data integrity and metadata integrity. These security
enhancements are the subject of previous work, and more
details can be found in [16].

-Application Layer: This part includes the web application
with the different used APIs. We introduce two main
modules. The first one, Digital Safe, implements the
AFNOR specifica¬tions to manage locally the data stored
using the File System API. The second module,
synchronization, is used to detect the user’s operations
applied on the Local Digital Safe and to record them. It
manages then the exchanged messages between the Local
Digital Safe and the Cloud Digital Safe following the
SyncDS protocol.

-Synchronization Control Layer : To go beyond the
commercialized solutions and to have the best
performances, we choose the WebSocket protocol to
ensure the bidirectional communication between the local
and the remote Digital Safe. The synchronization
management server handles the different synchronization
requests and responses as well as the conflict resolution. It
also notifies the devices concerned by the modification to

propagate the changes. Our proposed algorithm, based on
HHT, is introduced at this level.

- Server Storage Layer: As introduced in [1], the
Cloud Digital Safe is a standardized architecture that
provides a secure environment for storing sensitive
document. This en¬vironment fully fits both the user
requirements and Cloud security challenges. This Cloud
Digital Safe is composed of three main components:
Metadata server, storage servers and Proof Manager.

IV. SYNCDS SYNCHRONIZATION PROTOCOLS

A. Overview on synchronization Steps

After the architecture definition, we need to itemize the
syn-chronization protocol. SyncDS ensures data
synchronization in a standardized Digital Safe context.

Our protocol holds three phases as depicted in the figure 3:

-Offline phase: when the user goes offline, the Client
Digital Safe stores in a log file the different operations
performed locally. This strategy is the unique which can be
used even if it needs storage capacity. In fact, it guarantees
the non¬proprietary characteristic and avoid the use of
solutions which depend on the used operating system.
These operations are detected through the enhanced
HTML5 fileSystem APIs spec¬ification and the
Application cache API. They are stored then using the
HTML5 WebStorage API.

-On connection phase: It is a two way synchronization that
includes two steps. In the first step, the client posts
changes performed when it was offline. This step is based
on the operation approach. In fact, the log file is sent to the
server. The server then applies on his version the changes
as listed in the log file.

In the second step, the server reveals changes performed
on his side when the user was offline. These changes can
be performed by the same user in a different device or by
another user who shares a part of the file system. In this
step, the differencing approach is adopted. In fact, as
depicted in the figure 3, the Client Safe sends an abstract
of its file system (1) to the server. The server then
compares the received abstract with his version, detects
changes (2) to send them back to the user. We propose a
new algorithm based on HHT to detect the changes. This
algorithm will be detailed later in section IV-B. In case of
multiple devices connected at the same time, the problem
of conflict resolution is raised and many techniques are
already proposed to solve it [7] [5].

- Online phase: It is a two way synchronization. Changes
made on the client side are sent to the server and changes,
made by different devices and synchronized to the server,
are sent to the user. This step is based on the operation
approach. The novelty and originality of our protocol are
the introduction of the WebSocket to send data from the

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 130

client to the server. It is also adopted by the server to send
notifications and data to the client.

B. Changes detection during the on connection mode

Fig. 2. Overview on the synchronization protocol

1) Abstract structure: Among the metadata information, we
extract the ID, the path, the type and the hash of the object
(file or directory) to build the abstract. The abstract, in this
context, can be modeled into a rooted and ordered tree:
rooted as it has a root directory and ordered as there is a
hierarchical relation between files and directories. The
special feature of the abstract, in our proposal, is the
introduction of the Hierarchical Hash Tree (HHT). In fact,
two main functions can be considered when dealing with
the HHT.

Fig.3 Changes detection algorithm.

first to concatenate the different hashes of the directory’s
objects (files and directories). Then, we compute the hash
of the concatenation’s result. The concatenation should
follow a specific order of objects to have a unique hash. In
our case, we order the objects in the ascending number of
their IDs.

𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝐷𝐷(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑀𝑀𝑀𝑀5(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝐹𝐹(𝑓𝑓) + 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝐷𝐷(𝑑𝑑))

2) Changes detection algorithms: The whole algorithm is
composed of two algorithms: isolated subtree matching
and edit script generation.

a) Isolated subtree matching (Algorithm 1):

While comparing both versions of abstracts, the function
match(x,y) where x H T1 and y H T2 detects the subtrees
that has not bee^ changed in the trees T1 and T2:

Using a top-down tree analyses, the first algorithm looks
for the set of subtree that matches between both trees, i.e.,
matching the tree T1 and T2 leads to find the pair(x,y)
where the subtree of T1 rooted at x and the subtree of T2
rooted at y match (using equation (3)).

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 131

While a match is found both subtrees are erased from the
trees. In case of unmatched, the algorithm recursively
passes to the level bellow of the tree T1 and continues the
detection of matched subtree. The outputs of this algorithm
are two reduced trees.

b) Edit script generation (Algorithm 2): :

The edit script contains the different operations which
applied on the tree T1, we obtain then the tree T2. The
algorithm in this phase follows a down-top traversal of the
new version of the trees T1 and T2. The order of operation
detection in this algorithm is important and is considered
as follows: rename, copy, move, add ,modify, delete.
When the changes have been detected for an object of the
tree, this object will be deleted from the reduced tree.

In this algorithm, the different used function are detailed
bellow:

Type(n): returns the type of the node n. It can be a file or
directory;

Path(n): returns the path of the node n;

Name(n): returns the name of the node n;

Subtree(n): returns the subtree rooted at the node a and
extracted from the Tree T. This subtree matches to the
repository n with its content;

Match(ni,n2):verifies if two nodes n1 and n2 from two
different trees are identical;

Parent(n): returns the node parent of the node n;

HashF/D(n): returns the hash of the file or directory;
Mark(n): puts a mark on the node n to detect at the end of
the first algorithm the copy operation.

V. IMPLEMENTATION AND PROOF OF
CONCEPT

As a proof of concept and a proof of the protocol
efficiency, we focus mainly on three parts of the
synchronization archi¬tecture.

- The Chromium browser: We focus, in this paper, on the
Filesystem API. We add the encryption of files content in
the

Fig. 4 Implementation of the synchronization architecture
and protocols.

client side. We add also the data integrity with the
verification of the file hash and the metadata integrity by
encrypting the file name when stored in the indexed
database by the chromium browser.

- Synchronization in the Web application: A
HTML5 web application is developed based on the
enhanced File System, the basic Webstorage, the
Application Cache and WebSocket APIs. At this level, the
abstract of the file system is build following the HHT
structure. This application allows the user to manage his
Digital Safe, store the operations when he is offline and to
ensure the synchronization of his Digital Safe content
following the SyncDS protocol.

- Synchronization in the WebSocket Server: To
introduce the WebSocket server, we use the web server
Apache with its extension mod_pywebsocket. We add in
the server side the detection of changes by comparing two
abstracts (the one sent by the Client Digital Safe and the
other extracted from the Cloud Digital Safe). The
comparison of both abstracts is implemented using the
Java language and more specifically using the TreeModel
interface.

VI. ANALYSIS OF THE SYNCDS PROTOCOL

A. Efficiency perspective

SyncDS is a file synchronization protocol that focuses on
guaranteeing a high quality and minimal resource
consumption within a secure environment. It presents two
main novelties. The first one is the non-proprietary
characteristic of the synchronization architecture which
has a great importance to integrate a broad range of
competing products and devices. In fact, we enhance
HTML5 Local Storage APIs to store locally

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 132

user’s data in a client Digital Safe. We use also the
HTML5 WebSocket API for the data transfer between the
Cloud and client Digital Safe.

Property 1: The low computation of the data and metadata
at the client side is respected within our algorithm. If we
compare SyncDS with the already existent synchronization
protocols, the unique additional computation at the source
machine is the extraction of the Hierarchical Hash Tree.
We are keen on generating the abstract only once during
the on connection phase.

Property 2: Introducing the Hierarchical Hash Tree
im¬proves the efficiency of the change detection between
the file systems of the client and the server. In fact,
processing reduced version of trees is more efficient than
processing the whole trees. This minimizes systematically
the number of operation to generate the script.

To highlight the performances of HHT integration, we
compare, in figure 5, the time needed for the script
generation with and without the integration of the HHT
into the abstract structure. In fact, comparing these two
cases is equivalent to comparing the points of differences
between our proposed architecture and the already
commercialized one under the same experimental
conditions. .

. The results show that the change detection in the basic
protocol

Property 3: The number of synchronized files is reduced
while using the Hierarchical Hash Tree. For classic
changes detection [10] [17], they rely on objects name to
detect the changes. Therefore, when an object is renamed,
copied or moved, the whole object with its content is
synchronized since it is considered as a new element in the
new version of the file system. With HHT, and as the hash
is introduced into the conditions of detection, these
repositories and files are no more considered as new
elements and will not be synchronized as their content
already exists in the storage servers.

Property 4: Adopting the WebSocket protocol reduces the
messages exchanged between the client and the server.
This reduction is justified by the bidirectional
communication ensured by WebSocket as the server can
send any messages to the client without needing a request
from the client. Even the size of messages is reduced using
the WebSocket protocol.

We compare in this part our protocol with the existent
synchronization solutions which use the HTTP as the basic
protocol of com- munication between different entities of
the architecture. As shown by the results, the WebSocket
protocol is by far the most efficient, especially with large
files.

B. Security perspective

The architecture of synchronization is based on the Digital
Safe context. This context focuses mainly on adding the
probative value and preserving the integrity of a digital
object over the time.

Introducing the Hierarchical Hash Tree into the
synchro¬nization participates directly to ensure the
security of data in addition to the performances
enhancement. In fact, verifying the hash value of the root
directory of one file system detects systematically if one
object of the file system has been altered by a third party,
or the file system keeps its original version.

In this case, it is no longer necessary to check the hash of

objects one by one to verify the integrity.

VII. CONCLUSION

In front of the various owned devices and the need of
synchronizing the data between them, ensuring an efficient
file synchronization protocol is crucial. In this paper, we
propose an architecture and a protocol that ensure file
synchronization in a probative value Cloud. Two keynote
novelties of the SyncDS protocol are highlighted: first, the
integration of the Hierarchical Hash Tree into the metadata
abstract and second, the non-proprietary characteristics
with the adoption of HTML5 APIs. Our experimental
results show that using the new proposed framework,
reduces the time of change detection and therefore, reduces
the time of file synchronization across devices .

The conflict resolution is raised in our architecture in case
of multiple connections at the same time. As future work,
we will deal with the interference of the conflict resolution
strategies with the execution of our protocol.

REFERENCES

[1] M. Msahli and A. Serhrouchni, “Sbaas: Safe box as a
service,” in 9th IEEE International Conference on
Collaborative Computing: Network- ing, Applications
and Worksharing, Nov 2013.

[2] “Afnor groups.” [Online]. Available:
http://www.afnor.org/en

[3] M. D. N. Jain and R. Tewari., “Taper: Tiered approach
for eliminating redundancy in replica synchronization,”
in . In Proc. of the USENIX Conference on File And
Storage Systems, 2005.

[4] S. Agarwal, D. Starobinski, and A. Trachtenberg, “On
the scalability of data synchronization protocols for
pdas and mobile devices,” IEEE Network, Jul 2002.

[5] B. Xianqiang, X. Nong, S. Weisong, L. Fang, M.
Huajian, and Z. Hang,“Syncviews: Toward consistent
user views in cloud-based file synchro- nization
services,” in Sixth AnnualChinagrid Conference
(ChinaGrid),, Aug 2011.

[6] H. Yan, U. Irmak, and T. Suel, “Algorithms for low-
latency remote file synchronization,” in The 27th
Conference on Computer Communica-tions. IEEE
INFOCOM 2008, April 2008.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

4th National Conference On Emerging Trends In Computer Science & Engineering (NCETCSE-2018)

Conference Organized by: BGS Institute of Technology, Karnataka, INDIA - 571448 IJSPR | 133

[7] C. Liang, L. Hu, Z. Lei, and J. Wang, “Synccs: A cloud
storage based file synchronization approach,” Jul 2014.

[8] Benjamin, C.Pierce, and J. Vouillon, “What’s in
unison? a formal specification and reference
implementation of a file synchronizer,” in Tech. rep.
MS-CIS-03-36, Department of Computer and
Information Science, University of Pennsylvania, 2004.

[9] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R.
Sadre, and A. Pras, “Inside dropbox: Understanding
personal cloud storage services,” in

[10] Proceedings of the 2012 ACM Conference on Internet
Measurement Conference, ser. IMC ’12, 2012.

[11] A. Tridgell and P. Mackerras, “The rsync algorithm.
technical report tr- cs- 96-05, department of computer
science,” in The Australian National University,
Canberra, Australia, 1996.

[12] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically
structured information,” in Pro-ceedings of the 1996
ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’96, 1996.

[13] S. S. Chawathe and H. Garcia-Molina, “Meaningful
change detection in structured data,” in Proceedings of
the 1997 ACM SIGMOD Interna-tional Conference on
Management of Data, ser. SIGMOD ’97, 1997.

[14] R. Al-Ekram, A. Adma, and O. Baysal, “diffx: An
algorithm to de¬tect changes in multi-version xml
documents,” in Proceedings of the 2005 Conference of
the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’05, 2005.

[15] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered
approach for eliminat¬ing redundancy in replica
synchronization,” in In Proc. of the USENIX
Conference on File And Storage Systems, 2005.

[16] J. C. Anderson, J. Lehnardt, and N. Slater, “Couchdb
the definitive guide.” [Online]. Available:
http://guide.couchdb.org/

[17] M. jemel and A. serhrouchni, “Security assurance of
local data stored by HTML5 web application”, in the
10th international conference on information assurance
and security, Okinawa, Japan,

