INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

ISSN: 2349-4689

Analysis of 1/O Interrupt Request From The Trace
Data For Measuring System Performance Using
Clustering Algorithm

Bidisha Mahanta, Mirzanur Rahman

Department of Information Technology, Gauhati University, Guwahati, India

Abstract—This project is attempted t0 evaluate the effectiveness of
elementary sequence mining techniques for characterizing 1/0
trace data. Elementary means the preliminary sequence mining.
We have taken Interrupt vector table (IVT) as trace information
for the application, and apply K-Means clustering algorithms to
correlate particular trace sequences with phases of application
execution. By using Interrupt vector table, a vector space model,
text data can be treated as sparse numerical data vectors. It is a
contemporary challenge 10 efficiency of system process and
cluster very large document collections. In this paper we present a
time and memory efficient technique for the entire clustering
process, including the creation of the vector space model. \We
show that our approach can bring out correlations between 1/0
applications and phases of application execution, and also it can
take hold assure for performance monitoring.

Keywords— \N/T, interrupt request, clustering algorithm, g-grams.

I. INTRODUCTION

A designer always cannot give the exact analysis of the
performance and the characteristics of the applications in
which he is working. Since the same application may run for
different resources and also different memory systems. So
this become the responsibility of the designers to discover
the all details of all the application and the runtime and also
optimize the behaviours. For this work purpose we have to
find out in which particular time an application has executed
which are currently running on the system. Based on this
information we can lead to on monitoring and improve the
performance of

The applications which are running dynamically on the
system. Now a days, a system contains so many application
since the advent of grid computing, large systems have
thousands of applications are running in a system at a time.
Monitoring the behaviours and runtime of all applications is
not so easy. So we collect some samples which have helped
us to find performance and behaviours of the applications. In
a particular time, for the accuracy of the results consider
some amount of applications. This amount of data achieve

WWwW.ijspr.com

the accuracy .This data are depends on the variable based on
applications.

The performance of the applications are varies by the
execution phases and some application are varies by the
behaviour differently of the different machine on the
respective Of the machine. First however, we need to
understand what the different execution phases of
applications are, and we need to learn how to identify them
based on observable information.

In this paper, our main concern is in obtaining the runtime of
any respective application and ameliorates the performance
by employing the clustering and Q-gram on the IVT table.

Our main motivation is that we want to cluster the
applications that are running on the system taking a time
constant. Thus our main emphasis is on high speed and
scalability with modest main memory consumption. In
clustering, it first reads the whole vector table from the
system and analysis it. The IVT file shell have to be
generated by an external programme and refreshed
periodically.

We organized this paper as follows. In Section Il we
foreground the some prior works of this paper which we have
gone through during the project work duration. Section Il
we depict the Characterization of data, where we describes
how we tested our raw file and how it behaves. In Section 4
we describe how we have adapted existing algorithms for
approximated results for data mining work with our data.
Section 5 presents the results and discussions. Section 6
presents the conclusion and the possible future works of this

paper.
Il. LITERATURE OVERVIEW

There are several methods for this topic had been used in
previous research.

IISPR | 127

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

Lu and Reed [4] have investigated low-overhead alternatives
to event tracing called application signatures. They use curve
fitting to characterize individual performance metrics, and
use these to compare applications across platforms. This
technique is comparable to our sequence-mining approach,
but our research is focused more on leveraging powerful
existing data-mining techniques on available data than on
low overhead.

Hao Wang [3] has run tests on the same data, but his
approach has did not consider the sequential nature of the
data. Instead, he applied various data mining techniques to
individual packets of data, without taking into account their
order. Computer programs are inherently sequential, and
their actions are difficult to characterize without examining
their order. Streaming 1/O references made by computer
programs will also be strongly sequential, and mining for
frequently occurring sequences of data will be more effective
for characterization than analysis at the reference level.

Christopher LaRosa, LiXiong, Ken Mandelberg[6] has done
on Frequent Pattern Mining for Kernel Trace Data. The
introduction of low-impact kernel-level tracing tools allows
for comprehensive and transparent reporting of process and
operating system activity. An operating system trace log
provides detailed, explicit information about which processes
use which system resources at what time. This time series
data contains underlying knowledge, such as common
execution patterns. This information can assist in many
systems-related tasks: application debugging,
enforcement, performance optimization, operating system
debugging, and dynamic reconfiguration. However, while
kernel trace collection tools have advanced and matured,
there remains a lack of trace analysis tools for extracting
useful knowledge from raw trace logs.

security

N. Nakka, A. Choudhary, W. K. Liao[7] - In this paper, they
present a tool to extract 1/O traces from very large
applications running at full scale during their production
runs. They analyze these traces to gain information about the
application. They analyze the traces of three applications.
The analysis showed that the 1/0O traces reveal much
information about the application even without access to the
source code. In particular, these 1/O traces provide multiple
indications towards the algorithmic nature of the application
by observing the changes of data amount and 1/0O request
distribution at the checkpoints.

S. Parthasarathy, M. J. Zakiy, M. Ogihara, S. Dwarkadas
works on Incremental and Interactive Sequence Mining [8].
In this paper, we propose novel techniques for maintaining

WWwW.ijspr.com

ISSN: 2349-4689

sequences in the presence of a) database updates, and b) user
interaction (e.g. modifying mining parameters). This is a
very challenging task, since such updates can invalidate
existing sequences or introduce new ones. In both the above
scenarios, We avoid re-executing the algorithm on the entire
dataset, thereby reducing execution time. Experimental
results confirm that our approach results in substantial
performance gains.

Much work has been done on sequential pattern matching
(string matching) and on cluster mining in the past. Sequence
mining and approximate string matching have had important
applications to biological data, and we apply these
techniques to performance data. In particular, we use the K-
Mean clustering algorithm [2] to measure of the similarity of
sequences.

I1l. CHARACTERIZATION OF DATA

In this paper, we examine Interrupt Vector Table (IVT) trace
file. Interrupt Vector File is a file contains all the interrupts
of a system. Means it contains the record of each I/O event
that occurred during the system is running. IVT file is
benefited us so well because it has different 1/O events
records by which we can find the time it has occurred and
also the resources that are using or relocate or kind of
information’s.

A. INTERRUPT VECTOR TABLE

This is of great gain and involvement to system programmers
and administrators to adopt great apprehension of usage
modes on large scale machines. The tracing [18] utility traces
only 1/0 calls of the application interacting with the file
system. File system interactions of the tracing utility itself
are not traced. On detection of internal error conditions the
tracing halts, and allows the application to continue without
interruption if possible. Each process in the application job
generates one file containing the 1/0 traces encoded in an
efficient, platform independent, binary format. A dictionary
of the underlying file system where the trace data is written.
Describing the binary file format must be generated using a
provided external utility on the host platform. The resulting
traces can be decoded into readable format by using the
dictionary and the provided binary decoder on any machine.

In pthis paper, we consider interrupt vector table, where
represent 1/O trace events, while others are actual 1/0O system
calls made by the application. Each events represents
different 1/O events respectively such as read, write, open,

IJSPR | 128

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

close etc. We consider only read, write operations in this
paper.

operation types

aCccurance
=]
(=]
(=
(=]

i
! ‘IIII‘
|

Figure3.1- 1/O activity

From the IVT file we examined the durations of /O
operations which were most varied. The distributions of
values of read and write are shown below.

Read Operations

16000

L .
14000

12000

10000
8000
6000 /
4000 ‘A

2000

occurance

—§—Seriesl

e
*

ddb
8d5a
fooz
o
ddb
fooo
fooo
fooo
ddb
fooo
fooo
fooo
c00a
fooo
fooo
fooo

durations

Figure3.2 - Durations of Read operation

WWwW.ijspr.com

ISSN: 2349-4689

write Operations
16000
14000
12000
g 10000 y
= "I
E 5000 —
|
8 6000]
w60 il v LA
2000 1 | LI
i A 1l
o-Hdoomoo2Noocot-oocoPoo0o00
uouuougqoouhoooggggg
BRI Ve NEO o pIIR YR Le s
durations

Figure3.3- Durations of Write operation
IV. ANALYSIS ON THE PERFORMED DATA

In this section, we depict how we have use algorithms for
string matching and data mining on performed data up to a
far extent.

A. Q-GRAM

String matching is delimit ate in terms of characters in
sequence, or in the case of genetics, in terms of bases in
DNA molecules.

Q-grams are [11], generally refers to taking a stream of
inputs and breaking it into subsequence of a fixed length, g.
In our case, we do just that: we split the data stream into g-
grams of packets. As g-grams are sequential, comparing
them instead of individual packets should give us more of a
sense for the types of tasks the application is performing,
rather than for the overall mix of operations it is using. To
check the two g-grams are equal or not, there are some
methods. We obviously [9, 3] cannot compare two packets
for equality based on their timestamps, as this would result in
none of them being equal. Instead, we define three different
measures for packet equality based on the attributes available
to us in the data, and we look for the g-grams that met these
criteria.

We are followed two methods for considering two g-grams
are equal [9] .They are as follows-

1) Operation-Type equality: If two packets have the same
operation type, they are considered equal.

IJSPR | 129

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

2) Exact duration equality: If two packets are of the same
type, and they have the exact same duration, they are
considered to be equal.

B. CLUSTERING

In data mining field, clustering is the process of finding
similar group of objects from a large set of data. Clustering
process involves in assessing the similar points. In this
paper, we consider the points which are already passes
through g-gram. A common measure [9] of dissimilarity of
sequential strings is the edit distance. Edit distance is a
measure of how many changes (e.g. adding, deleting and
replacing of characters) would need to be made to make
one string to another. Even two g-grams, we can again treat
packets as characters, and using the equality measures.

Outlined above we can calculate the edit distance between
two g-grams.

We apply K-Means clustering algorithm as a clustering
algorithm. Because the only two operations we have
defined on our g-grams are edit distance, we cannot use
Density Clustering. K-Means requires the computation of a
mean from the data points, but all we have is a measure of
dissimilarity. Density clustering suffers from similar
problems, and is only applicable to spatial data.

The k-means algorithm is an algorithm to cluster n objects
based on attributes into k partitions, where k j n.[5].It is
similar to the expectation-maximization algorithm for
mixtures of Gaussian s in that they both attempt to find the
centres of natural clusters in the data. It assumes that the
object attributes form a vector space. An algorithm for
partitioning (or clustering) N data points into K disjoint
subsets Sj containing data points so as to minimize the
sum-of-squares criterion.

K

123 ke

J=ln&S;

Where, X, is a vector representing the n™ data point and uj is
the geometric centroid of the data points in S;. Simply
speaking k-means clustering is an algorithm to classify or to
group the objects based on attributes/features into K number
of group. K is positive integer number. The grouping is done
by minimizing the sum of squares of distances between data
and the corresponding cluster centroid [5].

WWwW.ijspr.com

ISSN: 2349-4689

MNumber of
cluster K

Centroid

Y

Distance objects to
centroids

L

Grouping based on
minimum distance

Figure 4.1: How the K-Mean Clustering algorithm works

It is worth [9] noting that the sequence clustering problem
has been looked at in considerable detail by Wang, et al.
They presented CLUSEQ, an algorithm for finding clusters
in sequential data without a preset number of clusters to find,
and without a preset length of sequences to cluster on (as our
g-gram analysis inherently requires). Also, CLUSEQ
measures Similarity by statistical properties of sequences,
rather than on a single distance metric. We believe that this
algorithm would be very effective in analyzing 1/O trace
data, but it was not available at the time we performed our
experiments. The algorithm is very sophisticated, and there
was not time available to rewrite and then debug it. We
believe that testing CLUSEQ holds promise for testing
performance data in the future.

C. IMPLEMENTATION

We have implemented our project that means Q-gram and
clustering algorithm using JAVA. We use the Interrupt
vector table as our back end since we are working on 1/0O
applications. Firstly, reads the whole Interrupt Vector File
continuously since it has dynamically updated as soon as
new interrupts occurred. Second step is to splits the files into
a fixed length. After spiting the file into g-gram finally, we
run the K-means algorithm over there.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this article, we explain our experimental results obtained
from mentioned algorithms.

Our approach has evaluated in “Net Beans” platform under
windows operating system. During the work since IVT has

1JSPR | 130

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

dynamically updated as new application has ran so after
some milliseconds 256 interrupts we got.

(=T T DE &E wes [|
|
Cluster Analysis |
so,000 | R
so000] |
40,000 .
30,000
20,000
10,000
e ———a
10 18 30 28 A0
B Segments @ Offsets
T T T

Figure 5.1: Result of clusters

Analysis of Cluster Values
001~ = : == — 3
5| |
| |
| ‘
1|.|:
=5 |
= [
1 [
R ‘
=
154
1904 |
154 |
1 1
1m |
| |
@ [
o il N
¥ 8 3 3 R B 8 B B B fl
GO S S ¥ k£ & ¥ £ % %
A fi 4 L T A fi
|_-'-’|¥ 5 Duta

Figure 5.2: analysis of memory usages in 0-22 milliseconds

WWwW.ijspr.com

ISSN: 2349-4689

Analysis of Cluster Values

o I 2 5 [= 2 o [t £
'Ci g 2 8 & & . 8 g i & B
Hi ki] R b L

Figure5.3: analysis of memory usages in 22-50 milliseconds

Figure5.1 depicts the diagrammatic view of 3 clusters
generated from the vector table. Figure5.2 and Figure5.3
display the analysis of memory usages in 0-22 milliseconds
and analysis of memory usages in 22-50 milliseconds
respectively.

VI. CONCLUSION AND FUTURE WORKS

In our project, we showed that we can bring out the
correlations of 1/0O applications and different I/O data
patterns by using data mining. We used Q-gram approach
which gives us the small occurrence execution in the course
of execution. Our clusters showed that on the application of
high-level, qualitative comparison operation to these Q-
grams, that we can use clustering techniques to find larger
groups of fairly similar g-grams. Cluster’s are closely
grouped in time basis, and could be used to build a
monitoring adaptive performance. Q-grams monitored at
runtime and identified by this classifier could be used to
guide scheduling decisions and resource allocation for
adaptive optimization. Since the whole project is not done
yet so that its limitations cannot be figured out now. Till now
documents are not gathered from different domains yet also.
We have to overtake this and try to get the best result in the
future.

This proposed solution will balance the load of the interrupts
to a great extent, as it used the g-gram distance. We used the
g-grams to compare for similarity, and this algorithm’s
running time of large values of g. We were unable to use this
method for long sequences and large data sets. Furthermore,
the K-Means clustering algorithm we used is not nearly as
sophisticated as other sequence mining techniques in the
literature. We believe that in the future, an algorithm like

IJSPR | 131

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Volume-18, Number - 03, 2015

”"CLUSEQ” could be used which will give us far better
results than this[9]. This algorithm uses a probabilistic
approach to determine g-gram similarity, and does not
require the number of clusters to be fixed from the outset. It
might be able to eliminate the clusters we saw with very
large standard deviations in time. Since we were successful
to obtain the correlation between 1/O application and time
while using unsophisticated techniques upto a far extent, we
believe that sequence mining is a promising approach for
mining trace information and facilitating adaptation[9].

REFERENCES

[1] M.Ester,H.-P.Kriegel, J. Sander, and X.Xu. A Density-Based
Algorithm for Discovering Clusters in large Spatial Databases
with Noise. In Proceedings of the International Conference
knowledge Discovery and Data Mining, 1996.

[2] L.Kauffman and P.J. Rousueeuw. Finding Groups in Data: an
Introduction to Cluster Analysis. John Wiley and Sons, 1990.

[31 HWang. COMP 290-090 Final
Performance Data. 2004.

Project:Mining in

[4] C-D. Luand D.A. Reed.Compact Application.

[5] Tutorial - Tutorial with introduction of Clustering Algorithms
(k-means, fuzzy-c-means, hierarchical, mixture of gaussians)
+ some interactive demos (java applets).

[6] Frequent Pattern Mining for Kernel Trace Data.Christopher
LaRosa, Li Xiong, Ken Mandelberg Department of
Mathematics and Computer Science Emory University,
Atlanta, GA 30322.

[7]1 Detailed Analysis of /O traces for large scale applications. N.
Nakka, A. Choudhary, W. K. Liao Electrical Engineering and
Computer Science Northwestern University, Evanston, IL,
USA.

[8] S. Parthasarathy, M. J. Zakiy, M. Ogihara, S. Dwarkadas
works on Incremental and Interactive Sequence Mining. by
Martin Fowler, Kent Beck (Contributor), John Brant
(Contributor), William Opdyke, don Roberts .

[9] Todd Gomblin.”COMP 290 Data Mining Final Project Using
sequence mining techniques for performance data”.

[10] R. Ngand J. Han. Efficient and Effective Clustering Methods
for Spatial Data Mining. In Proceedings of VLDB, 1994.

[11] E. Ukkonen. Approximate String matching with g-grams and
maximal matches. In Theoretical Computer Science, 1992.

WWwW.ijspr.com

ISSN: 2349-4689

[12] E. Ukkonen. Algorithms for approximate string matching. In
Information and Control, 1985

[13] Inderjit S. Dhillon, James Fan and Yugiang Guan.”Efficient
Clustering Of Very Large Document Collections.

[14] D.R. Cutting, D. R. Karger, J. O. Pedersen, and J. W.Tukey.
Scat-ter/gather: A cluster-based approach to browsing large
document collec-tions. In ACM SIGIR, 1992.

[15] J. Heaps. Information Retrieval - Computational and
Theoretical As-pects. Academic Press, 1978.

[16] Fang Chu.”Mining Techniques for Data Streams and
Sequences .

[17] Wenzhi Zhoul, Hongyan Liul, and Hong Cheng2.”Mining
Closed Episodes from Event Sequences Efficiently”.

[18] N. Nakka, A. Choudhary, W. K. Liao,L. Ward, R. Klundt, M.

. Weston.”Detailed Analysis of 1/O traces for large scale
applications”

IJSPR | 132

