INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

ISSN: 2349-4689

An Efficient and Responsive Architecture for Data
De-duplication Using MD5 Hash

Seemant Kumar Sharma, Saurabh Sharma
Gyan Ganga Collage of Technology, Jabalpur, India(M.P)

Abstract - In this digital world of internet, data storage and
server storage UsSe iS often and every home USer, enterprises,
several organizations are using email and online storage as a
storing node. Omnline backup storage is an easy option for
everyone 10 store digital data, files and other multimedia files.
This makes the storage servers loaded as well as more disk
storage 1S required 10 save a large amount of same data. Due to
the same reason the search operation takes more time to found
a specific file and time taken t0 give positive result and
acknowledgement s increased. This problem was overcome
with a mechanism known as Data de-duplication. This process
is used for removing duplicate data and to reduce redundancy
at server node. In this paper we have studied previous and
recent work on de-duplication and proposed a solution which is
a Parallel architecture for inline data de-duplication which uses
the secure hash algorithm 256 for performing data de-
duplication task in order t0 overcome the issues of time and to
reduce hash collision. In this architecture write and delete
operations are performed for efficiency and time evaluation.
This architecture is useful for storage servers where a huge
amount is stored every day and software industries always looks
for new developments so that they can keep their storage
systems up to date and free for efficient utilization of the server
nodes.

Keywords - Data De-duplication, Data Architecture MD5 Hash.

I. INTRODUCTION

Nowadays, online backup storage, content delivery net-
works, blog sharing, news broadcasting and social
networks as an ascendant part of Internet services are data
centric. Hundreds of millions of users of these services
generate petabytes of new data every day. For instance, as
of April 2011, an online file-sharing and backup services
called drop boxes, has more than 25 million 2GB drop
boxes (total of 50 petabytes). A large portion of internet
service data is redundant for the following reasons. One is,
now a days people tend to save data at multiple times for
data safety reasons and avoids purchasing storage for high
cost; this leads to more redundant data. One another reason
is, while incremental (or differential) data backups or disk
image files for virtual desktop tend not to have duplicated
whole-file copies, but still there is large ratio of duplicated
data portion from the modifications and revisions of the
files.

Rapidly increasing data arises many challenges to the
exist-ing storage systems. The large amount of data
requires more storage medium to be used [1]. As the data

WWW.ijspr.com

increases, more data is for backup cite. Due to increment in
storage data it is found that it brings some difficulties in
backup systems. The cost of the storage media has
decreased, but the main problem is t0 manage number of
disks in the back-up systems. In fact, in storage archives a
large amount of data is redundant and slight changed to
another chunk of data. The identification of these duplicate
chunks is fundamental to improve the quality of
information retrieval [10].

In de-duplication the redundant data is deleted by using
the cryptographic hash concept .In backup servers hash is
used for finding the duplicate data. Hash is a fixed length
representation of any arbitrary length message. The
complexity of comparisons can be reduced by using hash
as the original length of data is much more than the hash
size. In de-duplication process whenever any record comes
for server, it calculates the hash signature for the record
using secure hash algorithm (SHA). Once hash signature is
generated server checks this signature in hash index, which
is already maintained in the system. While searching for
the signature in hash index if the server finds its entry in
the hash index (record already exists) then rather storing it
again server creates a reference for this. This reference will
point to the location of block on the disk. In second case if
server does not find the entry of record in hash index table
it will store the record on the disk and adds an entry for its
hash signature in hash index.

A. Classification of data de-duplication

Generally de-duplication methods consists of two main
approaches for data de-duplication storage systems: finger-
printing based and delta-based data de-duplication. Nowa-
days, fingerprinting-based de-duplication is prevalent in
prac-tice and research and this thesis deals exclusively with
this type. The baseline algorithm for fingerprinting-based
data de-duplication, shown in Figure below is the sequence
of chunking, duplicate detection and storage: A Broad
view of de-duplication classification is presented in Figure
1.

B. De-duplication based on processing position

De-duplication can occur where data is created, which is
referred as source de-duplication”. De-duplication
performed at the place where data is saved or stored is

IUSPR | 31

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

called”target de-duplication” [1].

Sub File Based

I

Fixed Length Block

Fig. 1: Classification of Data De-Duplication Strategies

1) source and target de-duplication: When describing de-
duplication for backup architectures, it is common to hear
two terms: source de-duplication and target de-
duplication.Source de-duplication ensures that data on the
data source is de-duplicated. This generally takes place
directly within a file-system. The file system will
periodically scan new files creating hashes and compare
them to hashes of existing files. When files with same
hashes are found then the file copy is removed and the new
file points to the old file. Unlike hard links however,
duplicated files are considered to be separate entities and if
one of the duplicated files is later modified, then using a
system called Copy-on-write a copy of that file or changed
block is created. The de-duplication process is transparent
to the users and backup applications. Backing up a de-
duplicated file system will often cause duplication to occur
resulting in the backups being bigger than the source data.

Target de-duplication(De-duplication Appliance-based)
is the process of removing duplicates of data in the
secondary storage. Generally this will be a backup store
such as a data repository or a virtual tape library. In the
target de-duplication, when the data is coming to store, we
apply post process or in-line data de-duplication depends
on our needs at the target side [2] [3].

C. De-duplication based on time of processing

Data de-duplication can be broadly classified into two
types based on time of operation processing, De-
duplication can occur "In-line”, when data is in flowing
condition or "Post-process” ,in which it has been written.

1) Offline de-duplication(post-process deduplication or
asynchronous) : With post-process de-duplication, de-
duplication analysis and calculations are made after the
data is stored in storage device. Once the data is stored
then only the process will be applicable. A benefit of using
post process is no one need to wait for hash based

WWW.ijspr.com

ISSN: 2349-4689

calculations. The lookup is completed before storing the
data also ensuring about performance degradation not
achieved. On the negative side of this process,one may
unnecessarily save redundant data for a small time which
could be an important issue if the system is near to full
capacity.

2) In-line de-duplication(synchronous): This is the
process where the de-duplication hash calculations are
created on the target device. When the data enters the in
the device,if the device spots a that block that is already
stored on the system. It does not store the new data block
and just references to the existing block. The benefit of in-
line de-duplication is that it requires less amount of
storage. On the other side, because of hash calculations as
well as lookups takes long time, the data ingestion may be
slower. Due to which throughput of the device is reduced.

D. De-duplication based on storage position

There are major two types of data de-duplication based
on storage are known as primary data de-duplication and
secondary data de-duplication.

1. Data se-duplication method in which the data retain
in primary storage is used for de-duplication
mechanism is called “primary de-duplication”.
Primary storage is the storage which contains
currently used data, which is easily accessible by the
central processing unit on computer system. This is
generally a data with small capacity. Due to so
much frequently change in active or primary data
this method is not so much applied.

2. Data de-duplication method in which secondary
storage is used for de-duplication process is called
”secondary de-duplication”. Secondary data is the
data which is not so much used and stored from a
long time on a system. This kind of data is usually
not directly attached to CPU and not directly
accessible too. Due to a permanent behaviour of
secondary storage it is used more than primary de-
duplication method.

E. Hash Based De-duplication

In hash based data de-duplication process we use crypto-
graphic hash to detect redundant copy of any record. In the
general process storage server maintains a hash table,
which contain two fields. One is hash signature and other
is its real address. It calculates the hash signature for each
record requesting for backup by using secure hash
algorithm. Now it search for this hash signature in hash
table. If signature not found, that means record is unique,
and do an entry for this in hash table.

F. Levels of de-duplication

IUSPR | 32

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

Data de-duplication technology is used to identify
duplicate data, eliminate redundancy and reduce the need
to transfer or store the data in the overall capacity. The
redundancy may occur within a file, in a specific block of
data and in a specific byte of data. At present mainly three
levels of data de-duplication are classified as

1) File level de-duplication
2) Block-level de-duplication
3) Byte-level de-duplication

1) Whole File Hashing (or File-level De-duplication) :
In the file level de-duplication, entire file is assumed as a
record. When a file comes to back up, we compare the
hash signature of incoming file to already stored files hash
signatures. If the file is already stored, we store a reference
to it otherwise store entire file and make an entry for hash
signature of this file in the hash table.

2) Block-level De-duplication (or Sub File Hashing): In
the block-level data de-duplication method, incoming data
stream is divided into various data blocks and compared
with the hash of data block. Then it determine whether it is
same as with the previously stored data block (use hash
algorithm for each data block to form a digital signature or
unique identifier). If the hash of the data block is unique,
then store this block to disk, and store its identifier in the
hash index; otherwise, only store the reference to the same
data block’s original location. It stores a reference of a
comparatively small size in place of the data block, rather
than storing duplicate data blocks again, hence a
significant saving of disk storage space. Hash algorithm
used to judge duplicate data, may lead to conflict between
the hash signatures, so we use SHA-256 algorithm for
generating hash signatures because it generates 256 bit of
hash signature and can create different hash signature for
2% blocks of the data. There are two types of Block Level
de-duplication-

Fixed size block level de-duplication Fixed Block de-
duplication involves determining a block size and
segmenting files/data into those block sizes. Then,
those blocks are what are stored in the storage
subsystem. For example suppose we take a fixed size
1 byte to divide an incoming file.

Variable size block level de-duplication Variable Block

de-duplication involves using algorithms to determine
a variable block size. The data is split based on the
algorithm’s determination. Then, those blocks are
stored in the subsystem.

3) Byte-level De-duplication: In byte stream level data is
in another way . In this, the incoming data stream is divide

WWW.ijspr.com

ISSN: 2349-4689

into the number of bytes and then the hash signature of
each incoming bytes are compared with the stored bytes on
the disk and take appropriate action (Refer fig). Byte level
de-duplication gives highest accuracy as compared to file
level de-duplication and block level de-duplication. But
byte level de-duplication lead to many problems, which are
as follows

1) Size of the hash table will become very large.
2) It may lead to large file fragmentation.

3) Finally, byte level de-duplication will lead to
performance degradation.

G. Advantages of De-duplication

Data de-duplication provides higher data reduction ratio
from 10 to 1 to 50 to 1. Storage amount can be reduced
because less space is required as there is no redundant data
is present, it leads to fewer disk and less frequent
purchases of disk. The less amount of data will help to
utilize small backups and it will increase the overall
recovery time[6]. The main advantage of data de-
duplication algorithm is that the service can be provided in
data centers to more number of users with the same
amount of available resources. With the help of data
reduction resulted by de-duplication, disk management is
much easier as well as it decreases the overall cost of
managing any buying storage cost. An efficient de-
duplication algorithm is time saving which means service
is provided to many users with lesser amount of time at
same storage value. Apart from these benefits de-
duplication also saves network bandwidth as only fewer
data is in use. The main features of de-duplication are

Provides variable and fixed Block De-
duplication Efficient Storage Utilization)

Scalability
High Availability
I1. BACKGROUND AND RELATED WORK

The research of data de-duplication presently focuses on
different aspects. Effectiveness of data reduction is one of
them, that is, in order to reduce the storage capacity
requirement, re-move the duplicate data as much as
possible. Data reduction is definitely an important
parameter for better data de-duplication architectures.
Another aspect is the efficiency of data de-duplication,
i.e.to achieve the effectiveness of algorithm what amount
of resources are required. Many researchers worked in the
field of data de-duplication previously and resulted with
different methods for better efficiency.

IUSPR | 33

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

While surveying the recent methods and advancements
we can see that most available backup systems uses file-
level de-duplication [4] traditionally. But the data de-
duplication technology can exploit inter-file and intra-file
information redundancy to eliminate duplicate or similarity
data at the granularity of file, block or byte. Some of the
available architecture follows the source de-duplication
approach and provide the de-duplication technology in the
available users file system [5]. Because of this file system
de-duplication, user faces delay in sending data to backup
store, and the rest of the available architectures which
support target de-duplication strategy provide single
system de-duplication which means at the target side only
single system or Server handles all the user requests to
store data and maintains the hash index for the number of
disks attached to it [2].

Name of some previously proposed architectures are
VENTI, LBFS(lower bandwidth file system) [5],MAD2,
SIS (single instance store), CDC(Contenet defind
chunking) [6], INS(Index Name Server) and PASTICHE.
VENTI and Single Instance S adopt fixed-size file dividing
method to partition the file into blocks [7] [8].

LBFS and PASTICHE divide each file into variable
sized blocks [5] [9]. Fixed-size file dividing method is
simple and easy,but the salient disadvantage is that all the
blocks after the change point will be affected, and then
misjudged as non-duplicate blocks.

Zhu ET use the Summary Vector, an in-memory, conser-
vative summary of the segment index, to reduce the
number of times that the system goes to disk to look for a
duplicate segment only to find that none exists. Then they
use Stream-Informed Segment Layout (SISL) to create
spatial locality and to enable Locality Preserved Caching
(LPC) to prefetch hash codes of adjacent segments into
cache. LPC method avoids disk operation and accelerates
the process of identifying duplicate segments [10] [2].
some researchers worked in the field of cloud storage and
worked with using both fixed size block and variable size
blocks. As there are a lot of de-duplication techniques
depending on the algorithms chunking of the data blocks.
In paper, they chosen Fixed Block [l]and Rabins
Fingerprint [11] which are the most well known algorithms
as the representatives. Fixed Block algorithm uses fixed
size block as a unit of the de-duplication while Rabins
Fingerprint uses variable block size.

Tin-Yu Wu, Wei-Tsong Lee, Chia Fan Lin2 proposes a
new data management structure named Index Name Server
(INS), which integrates data de-duplication with nodes
optimization mechanisms for cloud storage performance
enhancement. INS manages and optimize the nodes

WWW.ijspr.com

ISSN: 2349-4689

according to the client-side transmission conditions.
Sengar and Mishra [2] proposed a very scalable and
efficient in-line data de-duplication using SHA-160. This
algorithm supports bloom filter to reduce the disk access
time for segments which are not present in the Disk.It
support load balancing in storage nodes.

A problem with the available architectures is that the
hash algorithm may lead to hash collision, that is, different
blocks produce the same hash codes, which will result in
discarding unique block mistakenly. However, LBFS [5],
fingerdiff [12] used hash algorithm (SHA-1 or MD5), and
most of them considered that the probability of hash
collision is extremely lower than the probability of
hardware errors. In our archi-tecture we selected SHA-256
hash algorithm because of its strong collision resistant and
encryption function. ”A Parallel Architecture for In-Line
Data De-Duplication Using SHA-256 Hash” is our goal.
The proposed architecture uses the hash index for
redundancy identification between files so it should fulfill
some other features-

Use of upgraded hash algorithm leads to lesser
probability of hash collision as SHA-256 Provide
hash signature upto 2% bytes.

Parallel implementation helps reducing time
consumption and shows better performance for larger
file sizes.

Space reclaiming with use of reference count
mechanism. To decrease the communication overhead
it should sup-port better interaction between storage
node and server.

I11. PROPOSED DE-DUPLICATION ARCHITECTURE

Our proposed architecture for inline data de-duplication
is given in (Refer fig 2) Our proposed parallel architecture
with SHA-256 algorithm,is using following concepts given
below-

A. Client

The node that contains or need back up for data is client.
When client require to store any data , it sends that data to
server node.

B. Server

After a client request a file to backup, server first
receives that file at backup store and after accepting the
file, server di-vides it in fixed size blocks(example 1024
KB) and group these divided blocks into super block and
these super blocks are distributed among nodes of
available storage using strategies of data distribution. Now
storage nodes and server create hash signature of

IUSPR | 34

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

distributed parts and a sequential search of hash signature
is performed . This search is performed in parallel way at
the maintained hash table.

C. Meta Server

All the database tables are collected at meta data server.
The meta data tables contain the file name, number of parts
in each file,parts path information,number of references to
each file part,hash signature of each files part and storage
utilization of each storage node information.

&meta
node 1 dato
Storage
node 2
Storage
noden

Meta Data

.

Meta data in sever node

Hash index
Storage Allocation

utilization table

Fig. 2: Proposed Parallel architecture

table

D. Storage Server

Every storage server has its hash table and information
related to it. Storage node first receives data for backup
and performs hash calculation of data block and compares
this with its hash table which is maintained by server itself.
The data is stored in disk storage if hash signature found
unique. If its signature is found similar then it only store
the reference.

IV. PROPOSED PROCESS

Our proposed architecture is executed with some module
and nodes are taken as components. Important components
of this architecture are client node and server nodes. By
using these nodes such parallel architecture is implemented
and performance study is obtained using the operations as
write, delete and read The main components of this
architecture are client, server, and storage nodes. The
operations which we have implemented in this architecture
are read, write and delete. Fourth operation is nothing
which leads to exiting from system. An schema for these
operations are discussed in following sections.

A. Descriptions of operations

Write operation algorithm At the server

WWW.ijspr.com

1)

2)

3)

4)

5)

ISSN: 2349-4689

Client sends the file or record to backup.

Server receives this requested file and numbers
of blocks are calculated by server itself.

These number of blocks are divided depends on
the block size allotted. For an example if a file
of 7 KB is requested for backup and block size
is decided as 1 KB , then the number of blocks
for the file will be 7.

In allocation table these blocks are entered.

Adds an entry in allocation table.

At the storage client

1)

2)

3)

Storage client receives the super block from
server and proceed to step 2.

Calculate hash signature for all available blocks
in the super block.

Determine if any of these or all of those blocks
are already stored or not. In case if already
stored , then go for referencing it; otherwise
entire block should be stored in disk.

Delete operation algorithm

1)

2)

3)

4)

5)

Client sends the file or record it wants to delete.

Server takes this request and send the name of
the file requested to module of metadata and to
all storage nodes. This both sending process are
done simultaneously.

Meta data module on server now decrease the
number of references and every storage node
also decreases the number of references
corresponding to that file.

Data block is deleted if the number of reference
value is zero for that data block.

Once deletion is performed, server
acknowledged to client with a message of
success.

Read operation algorithm

1)

2)

3)

Client requests to server to read file or record
with sending file name.

Server then sends that file name to metadata
module. In meta data allocation table each
record is main-tained.

Server gets the information about super block

IUSPR | 35

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

i.e. which storage node contains which super
block.

4) Send the read request to these storage nodes.

5) Storage clients accepts this request from server
and send the requested super block to server.

6) Finally server replies to client with received
parts from server.

7) B. Technologies used

Java programming language is wused for the
implementation of this architecture. Java sockets are used
for connection of network. for implementing the above
mentioned architecture. We are using java sockets for
implementing connection of network. This implementation
od connection network is be-tween client and server. Java
programming database is used for establishment of
connection between mysql server and java. Different java
classes are also used for different modules. Mysql server is
used for maintaining the metadata and their tables. These
tables contains the data about hash index, number of
references, allocation, file part meta data.

V. EXPERIMENTS

The main aim of our proposed architecture is to provide
a system or platform by which can remove duplicate data
from the data centers in parallel and allow load sharing.
Proper distribution of all incoming load is done using
storage balancing technique. This architecture also uses
distribution of requested data and server using different
storage nodes.

G000
5000
Original Upload
D¢ Dupficated Upload
e L
g
]
£ 30
B
:

Fle e im)

Fig. 3: Write process with 1 KB block size

Our implemented architecture provides inline data de-
duplication mechanism. Such method od de-duplication
takes place before storing data. It means the system checks
for redundancy when data is not stored. For experimental
purpose,we performed our experiments with different

WWW.ijspr.com

ISSN: 2349-4689

Block Size i.e. 1 KB ,2 KB, 3 KB and 4 KB and studied
their effect on different file size. For experiment we used
two core 2 Duo work stations with 4 GB RAM with
memory specification as 160 GB Hard drives and network
connection of 1GBPS LAN.

A. Performance on using 1KB block size for write and
delete process

For experimental purpose,we performed our experiments
with different Block Size i.e. 1 KB ,2 KB, 3 KB and 4 KB
and studied their effect on different file size. All the graphs
are representing two parameters as file size and storage
time taken for different files during write process and
delete process.

While using block size of 1 KB the performance
graph for write process different file sizes is given
below- (Refer fig 3)

While using block size of 1 KB the performance
graph for deleting different file sizes is given below-
(Refer fig 4)

~Oviginal Uplosd

Ne-Thplicated Upload

©
Fle stae o)

Fig. 4: Delete process with 1 KB block size

— = File Deletion hving Multiple Link

Hie Lsletion hving Single Link

Bt & Tiwe iva]

Fig. 5: Write process with 2 KB block size

IJSPR | 36

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

B. Performance on using 2KB block size for write and
delete process

C.P
delet

§

g T o]

i

While using block size of 2 KB the performance
graph for write process different file sizes is given
below- (Refer fig 5)

While using block size of 2 KB the performance
graph for deleting different file sizes is given below-
(Refer fig 6).

— —File Daletion having Multiple Link

Fibe Debelivn havitg Simhe Link

File e (1)

Fig. 6: Delete process with 2 KB block size

erformance on using 3KB block size for write and
e process

While using block size of 3 KB the performance
graph for write process different file sizes is given
below- (Refer fig 7)

Criginal Upload

% Dupicstod Upload

Fig. 7: Write process with 3 KB block size

While using block size of 3 KB the performance
graph for deleting different file sizes is given below-
(Refer fig 8).

WWW.ijspr.com

i g T i)

b Tiwe (m)

g

ISSN: 2349-4689

Fils e (kL]

Fig. 8: Delete process with 3 KB block size

- Diginal Upload
- De-Duplicaled Upluad

3 I '] "] w o an EL
ke Siie {52}

Fig. 9: Write process with 4 KB block size

- Origineal Uplond

De-ruplicated Upload

[} 0 a0 E 2 a0 36
Fie: Sare £D}

Fig. 10: Delete process with 4 KB block size

D. Performance on using 4KB block size for write and
delete process

While using block size of 4 KB the performance
graph for write process different file sizes iS given
below- (Refer fig 9

While using block size of 4 KB the performance
graph for deleting different file sizes is given below-
(Refer fig 10).

IUSPR | 37

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

When we applied write process on different files sizes
using inline parallel architecture , we found that; if we are
storing a file having multiple references then the time for
write process Will be less than the time taken by the system
,when there was no references.

When we applied delete process on different file sizes
using inline parallel architecture , we found that;if we are
deleting a fie having multiple references at first time
deletion will take very less time, because it only delete the
data base entries, and if we are finally deleting the data
having 1 reference count the deletion time will increase.
Our implementation is showing a same trend with varying
Block size. So it can be used with varied block sized file
system and it will The overall
performance on parameter time is given in the graph given
below- (Refer fig 11) The results we get with this
implementation and experiment are-

give same results.

Hash collision probability is much lesser due to use of
SHA-256 hash signature. It provides a message digest of
size 2'% 1, which means the probability is much lesser
then SHA-1 algorithm.

Fig. 11: File Storage time Variation with Varying Block
Size

For different block sizes the parallel architecture is run-
ning successfully and the time taken(in milliseconds) by
the system to perform write operation for redundant data is
less then the time taken to store that data first time. One
important fact we get during implementation is that this
architecture is more efficient for files with larger size. The
overall time taken to store redundant large files is lesser
then the time taken for small file size.

For performing the delete operation for block size of 1 KB,
2 KB, 3 KB and 4 KB,we get a fact that for deletion of a
single link the time taken by system is lesser; where for
deletion of actual data takes more time . This depends on
the reference count information. If the reference count is
greater than one then only the entries in database are

WWW.ijspr.com

ISSN: 2349-4689

remove and leads to lesser time but if the reference count is
one, in that case it has to go to the actual data storage and
will perform delete operation; that leads to more time
taking process.

Parallel architecture supports for better time efficiency and
load sharing. By using various storage nodes in parallel
with server node, the incoming data is properly shared with
all storage nodes and hash is created for each node
individually. For reading, writing or deleting these file it is
also easier for server to assemble all parts together and
sending the data to client.

It creates unique names of file if duplicates are present. If a
data is already stored then it fetches that particular part of
data and never write a duplicate name.

VI. COMPARISON WITH PREVIOUS HASH
ALGORITHMS

Hash signature or message digest iS a very important
part of data de-duplication process. While doing
experiments with this architecture using SHA-256
algorithm, we got better results. In previously used
methods MD5 or SHA-1 Algorithm was used. We can see
a comparison with these hash algorithms and we can
conclude that the SHA-256 algorithm is more efficient
than other algorithms.

Most important parameter for any cryptographic hash
algorithm is the hash size. SHA-256 gives the hash
output size with 256 bit, whereas MD5 and SHA-1
gives 128 bit and 160 bit hash respectively. This
means SHA-256 is toughest to crack.

The probability of collision is very less in the case of
SHA-256 algorithm with 2'%, In the case of MD5 and
SHA-1 the collision chances are 2** and 2%
respectively, which have more probability of having
collision. The maximum message size for SHA-256 is
2128 1.

It is higher than SHA-1 and MD?5, those have
maximum message size as 2° 1.

These properties of SHA-256 made it robust to use
and gives better results at higher speed.

VII. CONCLUSION AND FUTURE WORK

In this paper a parallel architecture for inline data de-
duplication is presented, in this we used SHA-256
algorithm for less collision probability. The main
advantage of using SHA- 256 algorithm is that, it provides
128 bit hash by which the collision probability is much
more lesser than previous de duplication methods. We
have implemented an inline parallel architecture for data de

IJSPR | 38

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 22, Number 01, 2016

duplication by experimenting write and delete operations
with different size of data blocks. Finally we got the
positive results for storing operations as well as for delete
operations. In our architecture we have implemented in-
line parallel architecture using server and client storage
based de-duplication of data. Further modification can be
done using different hash algorithms with variable block
size concept. Implementation of such architecture can be
done possibly on Linux kernel. Study is going on to check
our algorithm with varying Hashing methods and it will be
very interesting to check its performance compared to
other algorithms.

REFERENCES

[1] Q. He, Z. Li, and X. Zhang, “Data deduplication
techniques,” in Future Information Technology and
Management Engineering (FITME), 2010 International
Conference on, vol. 1. IEEE, 2010, pp. 430-433.

[2] S. S. Sengar and M. Mishra, “A parallel architecture for in-
line data de-duplication,” in Advanced Computing &
Communication Technologies (ACCT), 2012 Second
International Conference on. IEEE, 2012, pp. 399-403.

[3] Wikipedia, “Deduplication — wikipedia, the free
encyclopedia,” 2011, [Online; accessed 20-September-
2014]. [Online]. Available: http:
/len.wikipedia.org/w/index.php?title=Deduplication&oldid=
434419167

[4] G. Wang, Y. Zhao, X. Xie, and L. Liu, “Research on a
clustering data de-duplication mechanism based on bloom
filter,” in Multimedia Technology (ICMT), 2010
International Conference on. IEEE, 2010, pp. 1-5.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in ACM SIGOPS
Operating Systems Review, vol. 35, no. 5. ACM, 2001, pp.
174-187.

[6] X. Ge, N. Deng, and J. Yin, “Application for data de-
duplication algorithm based on mobile devices,” Journal of
Networks, vol. 8, no. 11, pp. 2498-2505, 2013.

[7] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage.” in FAST, vol. 2, 2002, pp. 89-101.

[8] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur,
“Single instance storage in windows 2000,” in Proceedings
of the 4th USENIX Windows Systems Symposium. Seattle,
WA, 2000, pp. 13-24.

[9] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche:
Making backup cheap and easy,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 285-298, 2002.

[10] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system.” in
Fast, vol. 8, 2008, pp. 1-14.

WWW.ijspr.com

ISSN: 2349-4689

[11] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki,
“Improving du-plicate elimination in storage systems,”
ACM Transactions on Storage (TOS), vol. 2, no. 4, pp. 424—
448, 2006.

[12] M. Jiantinga, “A deduplication-based data archiving

system.” Interna-tional Proceedings of Computer Science &
Information Technology, vol. 50, 2012.

IUSPR | 39

