INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 30, Number 02, 2016

ISSN: 2349-4689

An Effective Load Balancing with Conservative
Backfilling using Random Search in Grid
Computing

Anurag Shrivastava
Associate Professor
NRI Institute of Research and
Technology Bhopal (M.P.) INDIA

Abstract - Grid computing, one of the most contemporary
phrase used in IT, is appearing enormously distributed
computational paradigm. Despite a number of profits in
grid computing, still resource allotment is a challenging
task in the grid. This work defines to increase the benefits
by analyzing how the tasks are allocated to grid resources
effectively according to quality of service parameter and
gratifying user requisition. A method of conservative
backfilling load balancing with random search algorithm
has introduced to answer the above raised question about
the resource allocation problem based on grid user
requisition. The result of proposed method of CNBF-RS
algorithm ameliorates the grid resource allocation.

Index Terms: Grid Computing, Heterogeneous Resource,
Conservative Backfilling Load Balancing, Random
Search, Grid Resource Allocation.

1. INTRODUCTION

Grids are distributed systems that admit users to connect
with resources owned by different organizations. Grid
scheduling, that s, the allocation of distributed
computational resources to user function, is the most
challenging and difficult work in Grid computing.
Nowadays, several are the real-life applications in which
Grids are involved; some practical fields are protein
folding, weather modeling, and satellite image processing.
In grid architecture, users Ssubmit requests for task
execution from any one of a number of sites. At each site,
besides the local distributed system, the system miniature
is consists by three components: an External Scheduler
(ES), which is liable for finding a particular site where a
submitted work can be executed; a Local Scheduler (LS),
is liable for resolving the order in which tasks are executed
at that particular site; a Dataset Scheduler (DS), it is liable
for determining if and when to replicate data and/or erased
local files. Resource site consist, in general assorted
computing resources interconnect by vendor independent
networks. In general, on receipt of a task request, the ES
examine the LSs by double check whether the task can be
performed on the available resources and meet the user

WWW.ijspr.com

Vaibhav Patel
Assistant Professor
NRI Institute of Research and
Technology Bhopal (M.P.) INDIA

Praneet Khare
M.Tech Scholar
NRI Institute of Research and
Technology Bhopal (M.P.) INDIA

stated due date. If this is the case, stated site in which
executing that task is chosen. Otherwise, the ES attempt to
locate LS of a site, controlled by another ES that can meet
the task processing requirements, through search
mechanisms. If a LS cannot be placed in between a preset
number of search steps, the task request is either dropped
or move to another LS that can minimize the due date
failure lay on a task request parameter. When a satisfactory
site is located, the task request is move from the ES to this
site and managed by the correlated LS.

In Following Chapter 2 gives literature reviews of the
different method of load balancing, this entire scheme
entitled with their authors name and respective title.
Chapter 3 describes the process of proposed method with
algorithm and corresponding diagrams. Chapter 4
describes the implementation details and information about
used data set. The implementation details are also
explained out in terms of the algorithm process. Chapter 5
describes the result and analysis of the proposed work in
terms Of performance metrics. Chapter 6 describes the
conclusion of the proposed work and also describes the
future work. Chapter 7 specifies the references of research
paper, which use the corresponding details in our work.

2. LITERATURE SURVEY

Gnanasekaran et. al[1], Grid Computing emerged as a vast
scale distributed system to suggested dynamic coordinated
resources sharing and high performance computing. Grid
coordinates the resources that are not related to centralized
control. It applies standard open, general purpose protocols
and its interfaces. Grid sends non-trivial qualities of
service such as the response time, throughput, availability
and security.

Caramia et al. [2], Grid scheduling stands for the allocation
of distributed computational resources to user applications.
It’s the most challenging and complex task in Grid
computing. The problem of allotment of resources in Grid
scheduling requires the definition of a model that permits
local and external schedulers to communicate and achieve

IJSPR | 123

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 30, Number 02, 2016

an efficient management of the resources themselves. To
achieve this aim, some economic/market-based models
have been introduced

Keerthika et. al[3], This research paper propose a new
scheduling methodology for computational grids that
reduces load balancing, fault tolerance and user
satisfaction deals with grid architecture, resource
heterogeneity, resource availability and task characteristics
such as user deadline. This algorithm minimizes the
makespan of the job along with user satisfaction and also
balanced the load.

3. PROPOSED METHODOLOGY

The basic algorithm of proposed work CNBF-RS is as
follows:

[M’] = CNBF-RS (Q, M)

/I Q is the queue for incoming jobs

/I M is a map between jobs and resource nodes

/I M’ is the updated allocation map

Step 1: Initialize the status of all nodes (N).

Step 2: Initial status=.Previous

Step 3: While jobs=N and N>0 do

Step 4: if Current state iS ready to change then

Step 5: Current = Get change state (); /Computation stage
Step 6: Threshold = generate threshold (upper bound,
lower bound); //Load Balancing

Step 7: Now Random Search Optimization technique apply
on Q.

7.1 Initialize random search parameter @, on the basis of
current state and threshold value, initial point X, < Q
and iteration index k=0.

7.2 Generate a collection of candidate points V,,; < Q

according to a specific generator and associated sampling
distribution.

7.3 Update X, , based on the candidate pointsV, ,,
previous iterates and algorithmic parameters. Also updates
algorithm parameters 6, , .

7.4 If a stopping criterion is met then stop, otherwise
increment k and return to step 7.2.

Step 8: Through Random Search, find the optimized job
set in queue Q.

Step 9: Get first job j from Q.

Step 10: while j = null

Step 11: N i< the number of nodes required by j;

Step 12: N,y < the number of idle nodes;

Step 13: if N; < Ny, then remove j from Q and dispatch

idle
ittoany N i idle nodes; Updates M accordingly;

if j is not at the head of Q then

WWW.ijspr.com

ISSN: 2349-4689

insert j iNt0 Qpackfill;

else

Npackiin<- the number of nodes running jobs arriving later
than j;

it N < (Npaggin + Nigie) then

Suspend jobs in Quaekin that arrive later than j and move
then back to Q According to descending
order of their arrival time until the number of
Idle node is greater than Nj;

Remove j from Q and dispatch it to N; idle nodes;

Update M;

Step 14: j<- get the next job from Q and goto step 10.

Step 15: Go to step 3 with decrement list of nodes N.

Step 16: M’ = M;

Step 17: Finally obtain the updated jobs and resource node
allocation map with required load balancing.

4. EXPERIMENTAL STEP:

Load Balancing components have been developed which
executes in simulated grid environment. This application
has been developed using Java and Netbeans. GridSim
simulator is an event-based modular, consists of
independent entities which use the desired simulation
functionality (see Figure 1). It consists of the centralized
scheduler; the grid resource(s) with the local job allocation
strategy, the job, the machine, failure loader and various
classes are responsible for the simulation setup, the
visualization and the generation of simulation output. By
now, the Grid nodes are not directly simulated but the job
loader entity used as a main class for the future operation
of the Grid user. Simulator's behavior is driven by the
event-based message passing protocol. For each simulated
event, such as the job arrival or the job completion, one
message defining this event is created. It contains the
identifier of the message recipient, the type of the event,
the time when the event will occur and the message data.

Fig 1: Main Parts of the GridSim 5.0.2 Simulator

The JobLoader class of GridSim supports several trace
formats including the Grid Workloads Format (GWF) of
the Grid Workloads Archive and the Standard Workloads
Format (SWF) of the Parallel Workloads Archive.

5. RESULT ANALYSIS

The analysis of the existing work (FCFS, EASY-
Backfilling) and the proposed work (CNBF-RS) on
different parameters are given in following tables. We can
compare different load balancing technique with our
proposed technique. On the basis of load balancing with
scheduling method, FCFS (First Come First Serve) and
EASY Backfilling used as a existing technique and
Conservative Backfilling with Random Search (CNBF-RS)

IISPR | 124

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 30, Number 02, 2016

used as a proposed method. There are four parameters are
here for compare results of different approaches.

(1) Average Machine Usage

(2) Job Cluster Uses/Day

(3) Number of Requested and Used CPU
(4) Number of Waiting and Running Jobs

Table 1: Average Machine Usage (in Percentage) with
Different Load Balancing Strategies

EASY BACK
DAYS FCFS PROPOSED METHOD({CNEF-RS)
FILLING
0-5 0.6 0.8 0.6
5-10 40 40 40
10-15 1.8 1.8 2
15-20 35.6 3L6 32
20-25 35.2 36.3 34.5
25-30 14.6 15 10.5
30-35 39.8 35.3 35
35-40 12.2 12.6 9.6
40-45 21.4 21.6 20.8
45-50 42.6 44.4 44
50-55 29.8 31 30
55-60 23.8 28.2 23.4
200
180 - i —
160 — ——
140 |—
120 g — - PROPOSED

TECHMNIQUE (CNBF-RS)

100 —H— ; ;] TT
J L r"/ \ / \\ ——EASY BACKFILLING

80
60

——FCFS

40 -
20 1

0-5
5-10

10-15
15-20
20-25
25-30
30-35
35-40
A0-45
45-50
50-55
55-60

Fig 2: Average Machine Usage (in Percentage) with FCFS,
EASY Backfilling and Conservative Backfilling with
Random Search Strategies

As per above graph, proposed technique conservative
backfilling with random search has more utilize machine
resources like CPU and other equipments as compare than
FCFS and EASY Backfilling method.

Table 2: Job Cluster Uses per Day (in Percentage) with
Different Load Balancing Strategies

WWW.ijspr.com

ISSN: 2349-4689

PROPOSED TECHNIQUE
DAYS FCFS EASY BACKFILLING
(CNBF-RS)

0-5 13.2 12.8 13.2
5-10 40.6 404 424
10-15 2.2 1.8 2.2
15-20 45.5 416 45
20-25 45.6 4 30
25-30 52 524 54.8
30-35 614 6l 63
35-40 324 33 34
40-45 28.6 30 30.8
45-50 574 58 62
50-35 60.4 64.2 65.4
53-60 4 .2 33

50

45

20— - R

35 - —

30— —

25 1| —\k —4—FCFS

20 T —l—EASY BACK FILLING
|
15 1 COMS_Rs
10—
5 1
' 1
o+ |L| T T T T T T T 1
n o 0N O 1 oW o wm o nm o
P B B O
h © th © 1h & 1 © 1h & 1h
A Hd N Nom o omoF o Mo

Fig: 3 Job Cluster Uses per Day (in Percentage) with
FCFS, EASY Backfilling and Conservative Backfilling
with Random Search Strategies.

As per above graph, proposed technique conservative
backfilling with random search has more uses job clusters
as compare than FCFS and EASY Backfilling method.

Table3: Number of Requested and Used CPU’s

1400

1200

L
) |
/

. /

LA AN A
WAWAVAVYA

05 510 1H5 1520 N-5 1530 3035 3540 4045 4550 5055 5560

=4 Req. FCFS

== Req. Easy Back Flling

Req. CONS_RS

Fig: 4 Number of Requested CPU with FCFS, EASY
Backfilling and Conservative Backfilling with Random
Search Strategies

IISPR | 125

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 30, Number 02, 2016

500

AAVER'AY,

%

=4 Used FCFS

—HUsed Easy Back Fiiling
Used CONS_RS

05 510 10415 1520 205 21530 3035 3590 A0S AS50 5055 5560

Fig: 5 Number of Used CPU with FCFS, EASY
Backfilling and Conservative Backfilling with Random
Search Strategies

Table4: Number of waiting and running job with different
load balancing strategy.

FCFS EASY BACKFILLING CNBFHRS
DAYS (PROPOSED METHOD)

Waiting | Running | Waiting | Running | Waiting Running

0-5 0 2 0 2 0 2

5-10 21 21 21

10-15 1 1 1

15-20 26 25 29

20-25 24 21 18

25-30 12 10 10

30-35 34 29 35

35-40 8 8 3

40-45 17 17 139

45-50 61 60 135

wlwlo|loala|la|lu|o (o |w
w ool |aols oo |,

30-33 30 29 il

o |lw = |lo(la|lvu|la|la|la|a|wxm

55-60 40 20 16 15

[}
=

= TS

- W_EASY BACK FILING

15 W_LUNS_KS

05 0 10:5 1520 XI5 2530 50435 3540 4045 4550 5055 5560

Fig: 6 Number of waiting jobs with different load
balancing strategy.

6. CONCLUSIONS AND FUTURE WORK

The proposed CNBF-RS Algorithm implements load
balancing for scheduling the jobs. Experiments have been
done for makespan that serves as a parameter for
evaluating the efficiency of the algorithm and finally
average resource Utilization that serves as the evaluation
parameter for proper load balancing. From the results and
discussion section it is observed that load balance

WWW.ijspr.com

ISSN: 2349-4689

threshold achieves a better result than the existing FCFS
and EASY Backfilling algorithms. The proposed CNBF-
RS algorithm considers the load of each resource at the
time of scheduling which are very necessary in grid
environment. This can be continued in future with factors
for minimizing the communication overhead of the grid
system.

We showed the design and implementation of a protocol
(CNBF-RS) for load balancing with scheduling in a
Computational Grid. The Grid is partitioned into a number
of clusters and each cluster has a coordinator to perform
local load balancing opinion and also to link with other
cluster coordinators across the Grid to provide inter-cluster
load transfers, if needed. Our results confirm that the load
balancing method is scalable and has low message and
time complexities. Our work is ongoing and we are
looking into using the proposed model for real-time load
balancing where scheduling of a process to a Grid node
should be performed to meet its hard or soft deadline.

In future researches nodes can be designed hierarchically
and different classes of sites can be considered for nodes
(resources) in terms of computational capacity including
low, medium and high classes and the efficiency of sites
can be discussed based on them. In addition, for evaluating
of effectiveness of a node, load of each site can be
considered into value function, so that the best site for
executing the task can be selected. Future work will focus
on:

e Different scheduling can be used to optimization
approaches.

e Quality of Service Constrains such as reliability,
availability used as performance parameter.

Our research in this area is still at an early stage and there
are many facets worthy for future study. Firstly, we have
not modeled the contacts of accuracy of task execution
estimation of time on the effectiveness of our proposed
load balancing algorithm. Secondly, we will use migration
threshold dynamically according to real-time observation
of load behavior of system resources. Finally, we do not
take network and hardware failures take into account of in
this study. A failure model may be implemented to
examine this influence. Matured to the dynamic nature of
the practical grid environment, designing an ideal load
balancing algorithm still remains a challenge.

7. REFERENCES
[1] B.Priya and Dr.T.Gnanasekaran, “Grid Architecture for

Scheduling and Load Balancing — An Assessment”, ICICES,
2014.

IJSPR | 126

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Volume 30, Number 02, 2016

[2] Massimiliano Caramia and Stefano Giordani, “Resource
Allocation In Grid Computing: An Economic Model”, Wseas
Transactions On Computer Research, Page 19-27, Issue 1,
Volume 3, January 2008.

[3]P. Keerthika and N. Kasthuri, “A Hybrid Scheduling
Algorithm With Load Balancing For Computational Grid”,
International Journal of Advanced Science And Technology,
Vol.58, Pp.13-28, 2013.

[4] K. Sathish and A. Rama Mohan Reddy, “Maximizing
Computational Profit in Grid Resource Allocation using Dynamic
Algorithm”, Global Journal of Computer Science and
Technology Cloud and Distributed, Volume 13, Issue 2, 2013.

[5] Leyli Mohammad Khanli and Behnaz Didevar, “A New
Hybrid Load Balancing Algorithm in Grid Computing Systems”,
International Journal of Computer Science Emerging
Technology, Vol-2 No 5, Page 304-309, October, 2011.

[6] Resat Umit Payli, Kayhan Erciyes and Orhan Dagdeviren,
“Cluster-Based Load Balancing Algorithms For Grids”,
International Journal Of Computer Networks & Communications,
Vol.3, No.5, Sep, Page 253-269, 2011

[7] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load
Balancing Strategy for Grid Computing”, International Journal of
Computer, Electrical, Automation, Control and Information
Engineering Vol. 2, No:7, 2008

[8] Ralf Diekmann, Andreas Frommer and Burkhard Monien,
“Efficient schemes for nearest neighbor load balancing”,
www.elsevier.com/locate/parco, 1999.

[9] U. Karthick Kumar, “A Dynamic Load Balancing Algorithm
in Computational Grid Using Fair Scheduling”, International
Journal of Computer Science Issues, Vol. 8, Issue 5 No 1,
September 2011.

[10] Pawandeep Kaur and Harshpreet Singh, “Performance
Analysis of Adaptive Dynamic Load Balancing in Grid
Environment using GRIDSIM”, International Journal of
Computer Science and Information Technologies, Vol. 3 (3),
Page 4473-4479, Apr-2014.

[11] Kai Lu, Riky Subrata and Albert Y. Zomaya, “On the
performance-driven load distribution for heterogeneous
computational grids", www.elsevier.com/locate/jcss, Feb-2007.

[12] Priyanka Chauhan and Ritu Bansal, “Efficient Load
Balancing and Resource Scheduling for Optimizing Cost and
Execution Time Using ACO-A*Algorithm”, International Journal
of Recent Research Aspects ISSN: 2349-7688, Vol. 1, Issue 2,
pp. 189-196, September 2014.

[13] Frank C. H. Lin and Robert M. Keller, “The Gradient Model
Load Balancing Method”, IEEE Transactions on Software
Engineering, Vol. Se-13, No. 1, January 1987.

[14] Nikolaos D. Doulamis, Anastasios D. Doulamis,
Emmanouel A. Varvarigos and Theodora A. Varvarigou, “Fair

WwWw.ijspr.com

ISSN: 2349-4689

Scheduling Algorithms In Grids”, IEEE Transactions On Parallel
And Distributed Systems, Vol. 18, No. 11, November 2007.

[15] Rajkumar Buyya and Manzur Murshed, “GridSim: A
Toolkit for the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid
Computing”, http://www.buyya.com/gridsim/, 2011.

IJSPR | 127

http://www.buyya.com/gridsim/

