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Abstract - In this paper we have studied numerical simulation 
of a system of time-dependent advection-diffusion-reaction 
equations describing pollution in a river. The system consists of 
a pair of coupled equations representing the concentration of 
dissolved oxygen and that of biochemical oxygen demand or 
pollutant respectively. The coupling of these equations occurs 
due to the fact that oxygen and pollutant react with each other 
that result in producing harmless compounds. In each of the 
concentration equations both the advection and diffusion terms 
are linear while the reaction term is non-linear. However, 
handling of non-linear terms is too difficult to find solutions. 
Hence in order to make things simpler, the reaction term is 
separated from the remaining two terms using splitting method. 
Both the finite element methods, standard Galerkin and Taylor-
Galerkin, are applied to solve the advection-diffusion equations. 
However, Taylor-Galerkin method is preferred to Standard 
Galerkin whenever advection term dominates otherwise the 
reverse. Similarly, the time integration methods, particularly an 
improved Runge-Kutta method of order six, are developed and 
implemented to solve the system of reaction equations. These 
numerical methods are successfully applied to a test example 
consisting of one-dimensional system of advection-diffusion-
reaction equations together with Dirichlet boundary condition. 
Further inferences and discussions are included in the text. 
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1. INTRODUCTION 

Advection-Diffusion-Reaction equation (ADRE) is one of 
the most important and very frequently used mathematical 
models in science and engineering. It is a partial 
differential equation that can be derived using the physical 
laws of mass conservation as well as the mean value 
theorems of calculus. Advection refers to the movement of 
a substance due to flow of the medium e.g., water or air. 
Diffusion accounts the movement of substance from high 
concentration area to low concentration so as to distribute 
the substance uniformly in the medium. A chemical 
reaction is a process leading to the inter conversion of 
chemical substances. ADR equation is a mathematical 
model that describes how the concentration of one or more 
substances e.g., pollutants distributed in a medium or river 
changes under the influence of these three processes.  

The ADR equation can be used to model a wide range of 
natural phenomenon and explain their dynamics with 
respect to time. The application of the general advection-
diffusion-reaction equations are wide and numerous. For 
instance, they are used to formulate pollutant transport 
models in scientific disciplines ranging from atmospheric 
studies through medical science to chemo taxis [1, 11, 17, 
18, and 24]. 

However, in the present study we have chosen the one-
dimensional Streeter-Phelps equation which describing the 
river self-purification model as a concrete example. 
Historically, the famous mathematical model used to 
predict water quality in river is proposed by Streeter H W 
and Phelps E B in 1925 [3, 14, 18, 19, 21 and 29]. The 
Streeter-Phelps equation is applied to model the amount of 
dissolved oxygen (DO) in a stream after waste water is 
discharged into the stream. This model also enumerates the 
amount of pollutant at the downstream, for the pollutant 
travels with the stream velocity in the direction of the flow. 
When a pollutant is added to water then the amount of 
dissolved oxygen decreases to a minimum level and then 
gradually recovers and finally reaches a saturation level 
[28].   

Based on some realistic assumptions Streeter-Phelps 
model is modified and split into a pair of coupled 
advection-diffusion-reaction equations representing 
respectively the concentrations of dissolved oxygen and 
biochemical oxygen demand. To solve such pair of 
coupled system on different scales, we have to deal with 
the operator splitting methods which are used to decouple 
complicated partial differential equations into simpler 
equations and are often and widely used to simulate the 
theoretical models of environmental processes. These 
methods are developed and successfully applied in [5, 8, 
10, 13, and 24]. The idea here is to solve simpler equations 
using higher order discretization methods and achieve 
higher efficiency and more exact accuracy. The splitting 
strategy has been successfully applied to solve and analyze 
the present model. The model is split or divided into flow 
and reaction terms. The flow terms represent advective and 
diffusive transports while reaction term represents 
chemical transformations.  
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The advection-diffusion problems can be solved using 
standard Galerkin finite element method [7, 9, 20, and 26] 
provided that advection term does not dominate. However, 
in case of advection dominated problems the standard 
Galerkin finite element method often results in oscillatory 
solutions. Taylor-Galerkin method is an alternative to the 
standard Galerkin and the former can be used to overcome 
instabilities and inaccuracies of the solution [2, 6, 12, 20, 
22, and 23]. Also, the improved Runge-Kutta of order six 
can be applied to compute the reaction term [4, 25, and 
31]. This enables us to get a better understanding on how 
water quality in river or lake can be predicted and 
controlled. There are many factors which influence water 
quality such as dissolved oxygen level, water velocity, 
pollutant addition, and saturated oxygen concentration. All 
these factors are required to be included in the model 
formulation. However, the main consideration here is to 
predict the interaction between two important and 

influential factors viz., dissolved oxygen and biochemical 
oxygen demand concentration.  

2. MODEL FORMULATION AND DESCRIPTION 

The environmental purification models consider that a 
body of lake or river can be polluted by many kinds of 
impurities or substances. These substances will interact 
among themselves and with also other substances which 
are not considered as contaminants. The important task 
here is to model these interactions and is developed as 
follows: 

Let us suppose that a polluted river contains 𝑁𝑁 
contaminants with the respective concentrations   𝑢𝑢𝑖𝑖    for 
all  𝑖𝑖 =  1, 2, . . . ,𝑁𝑁. Then a possible approach to model 
river purification system corresponding to each of the 
chemical contaminants lead to the system of equations as   

 

                              𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑤𝑤𝑢𝑢 𝑖𝑖)
𝜕𝜕𝜕𝜕

 −  𝐷𝐷𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕2  =  �𝑞𝑞𝑖𝑖 

𝐴𝐴
 +  𝐾𝐾𝑖𝑖𝑢𝑢𝑖𝑖 + 𝐶𝐶𝑖𝑖  �   ,∀ 𝑖𝑖 = 1,2, … ,𝑁𝑁                   (1)                   

In (1), the terms  𝜕𝜕(𝑤𝑤𝑢𝑢 𝑖𝑖)
𝜕𝜕𝜕𝜕

,𝐷𝐷𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕2   and �𝑞𝑞𝑖𝑖 

𝐴𝐴
 +  𝐾𝐾𝑖𝑖𝑢𝑢𝑖𝑖 + 𝐶𝐶𝑖𝑖  � respectively represent advection, diffusion and reactions. 

The notations and meanings of various components of the models in this section are given in the form of a table as follows:   

 Variables and Parameters Meaning 
𝜕𝜕 Distance along the direction of river 
𝑤𝑤 Velocity of the river 
𝐴𝐴 Cross-sectional area of the river 
𝑢𝑢𝑖𝑖  Concentration of contaminant  𝑖𝑖 
𝑢𝑢1 The concentration of dissolved oxygen  
𝑢𝑢2 The concentration of biochemical oxygen demand 
𝑞𝑞𝑖𝑖  Net rate of addition of the suspension 
𝐷𝐷𝑖𝑖  Diffusivity coefficient 
𝐷𝐷1 The diffusion rates of dissolved oxygen 
𝐷𝐷2 The diffusion rates of biochemical oxygen demand 
𝐾𝐾𝑖𝑖  Emission rate of the contaminant 𝑖𝑖 
𝐾𝐾1 First order reaction rate 
𝐾𝐾2 Second order reaction rate 
𝐾𝐾0 Permeability to oxygen 
ℎ The effective depth of the imaginary membrane 
𝜔𝜔 The concentration of oxygen in the air immediately above the river 
𝜆𝜆 Reaeration coefficient 
𝛾𝛾 The reaction rate of oxygen and biochemical oxygen demand 
𝐶𝐶𝑖𝑖    Chemical reaction of contaminant 𝑖𝑖 

𝜕𝜕 Time 
Table 1: Variables and parameter values 

The equation (1) can be termed as coupled, since 𝐶𝐶𝑖𝑖  depends on the concentrations of the remaining 𝑁𝑁 − 1 
contaminants   𝑢𝑢1,  𝑢𝑢2, … ,𝑢𝑢𝑖𝑖−1 ,𝑢𝑢𝑖𝑖+1, … ,  𝑢𝑢𝑁𝑁. Involvement of this many variables and that of coupling make the equation (1) 
difficult to solve analytically. In order to get rid of this difficulty let us reduce the number of contaminants from 𝑁𝑁 to 
 𝑘𝑘 + 1 by combining less important contaminants as follows: Let there be  𝑘𝑘  number of most important contaminants in 
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the sense that they all exhibit more influence on the river pollution and they be identified with the notations 𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 . The 
remaining  𝑁𝑁 − 𝑘𝑘 numbers of contaminants are less important in the sense that they all exhibit very less influence on the 
river pollution independently. However the influence is considerable when all these contaminants are treated combined. 
Thus, the 𝑁𝑁 − 𝑘𝑘  contaminants 𝑢𝑢𝑘𝑘+1, … ,𝑢𝑢𝑁𝑁  can be combined and jointly considered as a single contaminant and let it be 
denoted by  𝑢𝑢𝑘𝑘+1. 

In order to make the model (1) physically meaningful let us set 𝑁𝑁 = 2  and 𝑘𝑘 = 1 and  𝑢𝑢1 and  𝑢𝑢2  as follows: Let 
 𝑢𝑢1 be the concentration of dissolved oxygen (DO) which is the most important variable in the purification of river. Any 
substance that consumes oxygen is considered as a pollutant due to the fact that the organisms living in water die without 
oxygen. Biochemical oxygen demand (BOD) can be defined as the maximum amount of oxygen per unit volume that the 
pollutant could consume. However, if the pollutants had consumed that much of oxygen, then there would remain no 
pollutant molecules in the water for the oxygen to combine with. Let the BOD be denoted by 𝑢𝑢2. 

The present model is built based on the following assumptions: (i) The River flow is with a constant velocity 𝑤𝑤 
and it is sufficiently slower so that diffusion along flow of the river is observable. (ii) Certain amount of pollutant elements 
have been discharged into the river and then ceased the discharge. (iii) BOD can decay only by combining with oxygen or 
due to combined effects of diffusion and advection. Hence 𝑞𝑞2 = 𝐶𝐶2 = 0 and 𝐶𝐶1 = 0 since the amount of oxygen is 
destroyed due to chemical reactions.  

With these assumptions, the model (1) simplifies to a purification model as  

                               𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 + 𝑤𝑤 𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

−  𝐷𝐷1
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝜕𝜕2  =  𝑞𝑞1

𝐴𝐴
−  𝐾𝐾1𝑢𝑢1                                                         (2)   

                                𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 +  𝑤𝑤 𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 −  𝐷𝐷2
𝜕𝜕2𝑢𝑢2
𝜕𝜕𝜕𝜕2   =  − 𝐾𝐾2𝑢𝑢2                                                       (3) 

 The first equation (2) of the system determines the amount of dissolved oxygen while the second equation (3) determines 
that of biochemical oxygen demand. In what follows, reasonable assumptions are made and accordingly suitable 
expressions for 𝑞𝑞1 and the first and second order reaction rates 𝐾𝐾1 and 𝐾𝐾2 are developed. 

Let us consider that oxygen diffuses into the river from the air immediately above the water. The interface 
between air and water behaves like a membrane that is permeable to oxygen in the sense that vertical diffusion near the 
surface of the river is much less efficient than at the lower levels. 

In this scenario it is then suggested that the flux of oxygen into the river is given by (𝑘𝑘0(𝜔𝜔 −  𝑢𝑢1) ℎ⁄ )[18]. The 
rate at which oxygen enters the river per unit length is obtained by multiplying (𝑘𝑘0(𝜔𝜔 −  𝑢𝑢1) ℎ⁄ )  by the average breadth 𝑏𝑏 
of the river. Thus,  

                                      𝑞𝑞1
𝐴𝐴

 =  𝑏𝑏𝑘𝑘0(𝜔𝜔  − 𝑢𝑢1)
𝐴𝐴ℎ

 =  𝜆𝜆(𝜔𝜔 −  𝑢𝑢1),                                                         (4) 

Here in (4), 𝜆𝜆 =   𝑏𝑏𝑘𝑘0
𝐴𝐴ℎ

  which is a constant and has a dimension of a specific rate i.e. 𝜕𝜕−1.  The expression 𝜔𝜔 −  𝑢𝑢1 denotes 
the oxygen deficit.  

 

Now to specify 𝐾𝐾1 and  𝐾𝐾2, the chemical reaction that consumes the river’s oxygen may be written symbolically 
as  

                                                         𝑂𝑂𝜕𝜕𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +  𝐵𝐵𝑂𝑂𝐷𝐷 →  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝜕𝜕                                           (5) 

We suppose that the rate at which the reactants, namely oxygen and BOD, convert into product is proportional to their 
concentration. Moreover, by definition of BOD, they must both convert at the same rate. Thus, 

                                             −𝐾𝐾1𝑢𝑢1 = −𝛾𝛾𝑢𝑢1𝑢𝑢2 =  −𝐾𝐾2𝑢𝑢2,                                                       (6) The relations (6) imply that 
𝐾𝐾1 =  𝛾𝛾𝑢𝑢2 and 𝐾𝐾2 = 𝛾𝛾𝑢𝑢1. Combining equations (6) with (2) to (4), we obtain a pair of coupled nonlinear partial differential 
equations as 
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                                     𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

=  −𝑤𝑤 𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 +  𝐷𝐷1
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝜕𝜕2  +   𝜆𝜆(𝜔𝜔 −  𝑢𝑢1) −  𝛾𝛾𝑢𝑢1𝑢𝑢2                            (7)             

                                     𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

=  −𝑤𝑤 𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 +  𝐷𝐷2
𝜕𝜕2𝑢𝑢2
𝜕𝜕𝜕𝜕2 −  𝛾𝛾𝑢𝑢1𝑢𝑢2.                                                     (8) 

The model (7) and (8) is referred to as the modified Streeter-Phelps model. The proposed model is not the Streeter-Phelps 
model itself, since the original Streeter-Phelps model ignored the diffusive effects, and replaced the deoxygenation term by 
first order chemical reaction. This has the sizeable benefit of linearizing the problem and permitting an exact solution.  
However, in the present modified model we included diffusive effects and argue that the river is moderately polluted, and 
then the second order kinetics is required. Hence, the model is nonlinear and coupled, thus requiring numerical 
approximation.  

          The equation (7) represents a mass balance for dissolved oxygen, with addition through the surface at a rate 
proportional to the degree of saturation of dissolved oxygen (𝜔𝜔 −  𝑢𝑢1), and consumption during the oxidation of 
pollutant  𝛾𝛾𝑢𝑢1𝑢𝑢2. The BOD concentration 𝑢𝑢2 reduces due to its biochemical reaction with dissolved oxygen and its rate of 
reduction is described by the term  − 𝛾𝛾𝑢𝑢1𝑢𝑢2. Furthermore, the term  − 𝛾𝛾𝑢𝑢1𝑢𝑢2   enables pollution to be removed at a rate 
proportional solely to the BOD concentration whenever the oxygen levels are higher. However, the same proportionality 
holds true even when the levels of oxygen concentration is lower. The equation (8) consists of removal of pollutant (BOD) 
by oxidation  𝛾𝛾𝑢𝑢1𝑢𝑢2.  In order to simplify the equations we will set constant values for all the parameters  𝑤𝑤, 𝛾𝛾, 𝜔𝜔, 𝜆𝜆, 𝐷𝐷1   
and   𝐷𝐷2 while carrying out simulation study.  

3. NUMERICAL METHODS 

In this section, different numerical methods have been applied to solve (7) and (8) together with appropriate initial 
and boundary conditions and parametric values. The independent variable 𝜕𝜕  is restricted to the region  0 ≤ 𝜕𝜕 ≤  𝐿𝐿, 𝐿𝐿 being 
the length of the channel that varies in the interval  [0, 1]. Also the time variable being independent is a non-negative 
quantity and hence 𝜕𝜕 ≥ 0.    

3.1  Splitting Method 

Operator splitting method is widely used to simulate the models of environmental processes. We split the 
advection-diffusion-reaction equations (7) and (8) into two unsteady sub-problems. The main advantage of splitting is that 
each sub-problem can be discretized by any convenient and independent methods. 

Following this approach we separate the linear advection-diffusion and non-linear reaction terms from equations 
(7) and (8) to obtain the following:   

                                                   𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 =  −𝑤𝑤 𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 +  𝐷𝐷1
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝜕𝜕2                                                    (9) 

                                        𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 =  −𝑤𝑤 𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 +  𝐷𝐷2
𝜕𝜕2𝑢𝑢2
𝜕𝜕𝜕𝜕2                                                 (10) 

                                        𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 =  𝜆𝜆(𝜔𝜔 −  𝑢𝑢1) −  𝛾𝛾𝑢𝑢1𝑢𝑢2                                            (11) 

                                        𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 =  − 𝛾𝛾𝑢𝑢1𝑢𝑢2                                                                 (12) 

Advection-diffusion and reaction terms are not commuted here, since reaction term is non-linear. Thus, a splitting error of  
first order 𝑝𝑝(𝜏𝜏) is expected to obtain. 

3.2  The Finite Element Method  

In order to discretize equations (9) and (10) subsequently, we first discretize the following mathematical model 
describing the advection and diffusion processes in the one-dimensional time dependent advection-diffusion equation 
together with initial and boundary conditions 

                            𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

 +  𝑤𝑤 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

 −  𝐷𝐷 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 = 0,   0 ≤ 𝜕𝜕 ≤ 𝐿𝐿,  𝜕𝜕 > 0                                             (13) 

                                            𝑢𝑢(𝜕𝜕, 0) =  𝑢𝑢0(𝜕𝜕), 0≤ 𝜕𝜕 ≤ 𝐿𝐿                                                        (14) 
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                                            𝑢𝑢(0, 𝜕𝜕) = 𝑓𝑓(𝜕𝜕),     𝑢𝑢(𝐿𝐿, 𝜕𝜕) = ℎ(𝜕𝜕),  t > 0.                                    (15) 

Here in (14) and (15), 𝑢𝑢(𝜕𝜕, 0) is the initial concentration distribution of pollutant at time 𝜕𝜕  = 0;  𝑢𝑢(0, 𝜕𝜕) is fixed 
concentration of pollutant at 𝜕𝜕  = 0; and 𝑢𝑢(𝐿𝐿 , 𝜕𝜕) is fixed concentration of pollutant at the location 𝜕𝜕 = 𝐿𝐿 for all times. 

 The varational formulation for the problem (13) reads as follows: For every time interval 𝐼𝐼𝑂𝑂 =  (𝜕𝜕𝑂𝑂−1
�, � 𝜕𝜕𝑂𝑂] find 𝑢𝑢(𝜕𝜕, 𝜕𝜕), 

𝜕𝜕 ∈ 𝐼𝐼𝑂𝑂  such that 

                                ∫ ∫ 𝑣𝑣(𝜕𝜕) �𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

 −  𝐷𝐷 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 � 𝑝𝑝𝜕𝜕𝑝𝑝𝜕𝜕𝐿𝐿

0
𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

 = 0                                        (16) 

where 𝑣𝑣(𝜕𝜕) is arbitrary test function. On applying integration by parts with equation (15) on the second order derivative in 
(13) and after simplification it reduces to the form  

             ∫ �∫ �𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
𝑣𝑣 + 𝑤𝑤 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
𝑣𝑣 +  𝐷𝐷 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
� 𝑝𝑝𝜕𝜕𝐿𝐿 

0 � 𝑝𝑝𝜕𝜕𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

 = 0, ∀𝑣𝑣: 𝑣𝑣(0, 𝜕𝜕) =  𝑣𝑣(1, 𝜕𝜕) = 0.           (17)                               

A piecewise linear Galerkin approximation: For each time interval 𝐼𝐼𝑂𝑂 =  (𝜕𝜕𝑂𝑂−1
�, �𝜕𝜕𝑂𝑂]  with  

step size 𝑘𝑘 = 𝜕𝜕𝑂𝑂 −  𝜕𝜕𝑂𝑂−1, let 

                                  𝑢𝑢(𝜕𝜕, 𝜕𝜕) =  𝑢𝑢𝑂𝑂−1(𝜕𝜕)𝜑𝜑𝑂𝑂−1(𝜕𝜕)  +    𝑢𝑢𝑂𝑂(𝜕𝜕)𝜑𝜑𝑂𝑂(𝜕𝜕)                                          (18) 

where  𝜑𝜑𝑂𝑂(𝜕𝜕) =  𝜕𝜕  −  𝜕𝜕𝑂𝑂  
𝑘𝑘

 ,  𝜑𝜑𝑂𝑂−1(𝜕𝜕) =  𝜕𝜕𝑂𝑂−1 − 𝜕𝜕   
𝑘𝑘

  and  

             𝑢𝑢𝑂𝑂(𝜕𝜕) =   𝑢𝑢𝑂𝑂 ,1𝜑𝜑1(𝜕𝜕)  +   𝑢𝑢𝑂𝑂 ,2𝜑𝜑2(𝜕𝜕)+ . . . +  𝑢𝑢𝑂𝑂 ,𝑚𝑚𝜑𝜑𝑚𝑚 (𝜕𝜕).                                             (19) 

In (18), 𝑢𝑢 is piecewise linear function with respect to both space and time variables.  By the Galerkin approach, 
we choose the test function to be the same as the basis function. Hence the unknowns are the coefficients 𝑢𝑢𝑂𝑂 ,𝑘𝑘  satisfying 
discrete variational formulation as 

                              ∫ �∫ �𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
𝜑𝜑𝑗𝑗 + 𝑤𝑤 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
𝜑𝜑𝑗𝑗 +  𝐷𝐷 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
� 𝑝𝑝𝜕𝜕𝐿𝐿 

0 � 𝑝𝑝𝜕𝜕𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

 = 0.                                 (20) 

Here 𝑗𝑗 refers to the number of nodes in an element and 𝑗𝑗 = 1, 2, . . . ,𝑚𝑚. 

Further, on substituting the step size 𝑘𝑘 = 𝜕𝜕𝑂𝑂 −  𝜕𝜕𝑂𝑂−1 and the space variables 𝑢𝑢𝑂𝑂 = 𝑢𝑢(𝜕𝜕𝑂𝑂) and 𝑢𝑢𝑂𝑂−1 = 𝑢𝑢(𝜕𝜕𝑂𝑂−1) the 
equation (18) takes the form as 

                         �̇�𝑢(𝜕𝜕, 𝜕𝜕) =  𝑢𝑢𝑂𝑂−1(𝜕𝜕)𝜑𝜑𝑂𝑂−1
′(𝜕𝜕)  +    𝑢𝑢𝑂𝑂(𝜕𝜕)𝜑𝜑𝑂𝑂 ′(𝜕𝜕) =   𝑢𝑢𝑂𝑂−  𝑢𝑢𝑂𝑂−1

𝑘𝑘
                          (21) 

Also differentiation of (18) with respect to 𝜕𝜕 gives  

                     𝑢𝑢′(𝜕𝜕, 𝜕𝜕) =   𝑢𝑢′𝑂𝑂−1(𝜕𝜕)𝜑𝜑𝑂𝑂−1(𝜕𝜕)  +    𝑢𝑢𝑂𝑂 ′(𝜕𝜕)𝜑𝜑𝑂𝑂(𝜕𝜕)                                                  (22) 

Up on inserting (21) and (22) and using the values of definite integrals ∫ 𝑝𝑝𝜕𝜕𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

=   𝑘𝑘 and ∫ 𝜑𝜑𝑂𝑂𝑝𝑝𝜕𝜕
𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

 =

   ∫ 𝜑𝜑𝑂𝑂−1𝑝𝑝𝜕𝜕
𝜕𝜕𝑂𝑂
𝜕𝜕𝑂𝑂−1

 =  𝑘𝑘
2
  the equation (20) takes the form as  

∫   𝑢𝑢𝑂𝑂𝜑𝜑𝑗𝑗𝑝𝑝𝜕𝜕
𝐿𝐿 

0 −  ∫   𝑢𝑢𝑂𝑂−1𝜑𝜑𝑗𝑗𝑝𝑝𝜕𝜕
𝐿𝐿 

0  + 𝑤𝑤 𝑘𝑘
2

 ∫   𝑢𝑢′𝑂𝑂−1𝜑𝜑𝑗𝑗𝑝𝑝𝜕𝜕
𝐿𝐿 

0 +  𝑤𝑤 𝑘𝑘
2

 ∫   𝑢𝑢′𝑂𝑂𝜑𝜑𝑗𝑗 𝑝𝑝𝜕𝜕
𝐿𝐿 

0 +               𝐷𝐷 𝑘𝑘
2

 ∫   𝑢𝑢′𝑂𝑂−1 𝜑𝜑′𝑗𝑗 𝑝𝑝𝜕𝜕
𝐿𝐿 

0 +

 𝐷𝐷 𝑘𝑘
2

 ∫   𝑢𝑢′𝑂𝑂  𝜑𝜑′𝑗𝑗 𝑝𝑝𝜕𝜕
𝐿𝐿 

0  =   0.                                                 (23)                                            

This can be written in the compact form as Crank-Nicolson system (CNS)  

�𝑀𝑀 +  
𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷𝐴𝐴𝑝𝑝) � 𝑢𝑢𝑂𝑂 =    �𝑀𝑀 −  
𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷𝐴𝐴𝑝𝑝) � 𝑢𝑢𝑂𝑂−1 

Also, its solution 𝑢𝑢𝑂𝑂   are given by                                      

www.ijspr.com                                                                                                                                                                               IJSPR | 98 



INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH  (IJSPR)                                           ISSN: 2349-4689 
Volume 30, Number 02, 2016 
 

                      𝑢𝑢𝑂𝑂 = �𝑀𝑀 +  𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷𝐴𝐴𝑝𝑝) �
−1
�𝑀𝑀 −  𝑘𝑘

2
(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷𝐴𝐴𝑝𝑝) � 𝑢𝑢𝑂𝑂−1.               (24) 

Here 𝑢𝑢𝑂𝑂 =  �𝑢𝑢𝑂𝑂 ,1, 𝑢𝑢𝑂𝑂 ,2, . . . ,𝑢𝑢𝑂𝑂 ,𝑚𝑚  �𝑇𝑇 . For each given the vector   𝑢𝑢𝑂𝑂−1,   ∀𝑂𝑂 = 1, 2, . . . ,𝑁𝑁 CNS is used to compute the 𝑚𝑚−  
dimensional vector  𝑢𝑢𝑂𝑂 . 

To compute the stiffness matrices of diffusion term 𝐴𝐴𝑝𝑝 , the advection term 𝐴𝐴𝑎𝑎 , and the mass matrix  𝑀𝑀, let us 
differentiate (19) to obtain 

𝑢𝑢′𝑂𝑂(𝜕𝜕) =    𝑢𝑢𝑂𝑂 ,1𝜑𝜑′1(𝜕𝜕)  +  𝑢𝑢𝑂𝑂 ,2𝜑𝜑′2(𝜕𝜕) +  . . . +  𝑢𝑢𝑂𝑂 ,𝑚𝑚𝜑𝜑′𝑚𝑚 (𝜕𝜕). 

Thus, we have  

𝐴𝐴𝑝𝑝𝑢𝑢𝑂𝑂  =   �   𝑢𝑢′𝑂𝑂  𝜑𝜑′𝑗𝑗 𝑝𝑝𝜕𝜕
𝐿𝐿 

0
 =  ��   𝜑𝜑′𝑗𝑗  𝜑𝜑′1

𝐿𝐿 

0
�  𝑢𝑢𝑂𝑂 ,1𝑝𝑝𝜕𝜕 +   

                                                        �∫   𝜑𝜑′𝑗𝑗  𝜑𝜑′2
𝐿𝐿 

0 �  𝑢𝑢𝑂𝑂 ,2𝑝𝑝𝜕𝜕+ . . . + �∫   𝜑𝜑′𝑗𝑗  𝜑𝜑′𝑚𝑚
𝐿𝐿 

0 �  𝑢𝑢𝑂𝑂 ,𝑚𝑚𝑝𝑝𝜕𝜕, 

By using the linear piecewise function 𝜑𝜑𝑗𝑗 (𝜕𝜕) with uniform mesh.    

                          𝜑𝜑𝑗𝑗 (𝜕𝜕)  =  �

𝜕𝜕− 𝜕𝜕𝑗𝑗−1

ℎ
 ,    𝑓𝑓𝑝𝑝𝑝𝑝   𝜕𝜕𝑗𝑗−1  ≤ 𝜕𝜕 ≤  𝜕𝜕𝑗𝑗

𝜕𝜕𝑗𝑗+1 −𝜕𝜕

ℎ
,    𝑓𝑓𝑝𝑝𝑝𝑝   𝜕𝜕𝑗𝑗  ≤ 𝜕𝜕 ≤  𝜕𝜕𝑗𝑗+1

0,                     𝑝𝑝𝜕𝜕ℎ𝑂𝑂𝑝𝑝𝑤𝑤𝑖𝑖𝑒𝑒𝑂𝑂

�                                            (25) 

Then, we obtain   𝐴𝐴𝑝𝑝  =    1
ℎ

⎣
⎢
⎢
⎢
⎡

2  − 1    0  .  .  .  0    0    0
−1  2   − 1  .  .  . 0    0    0
.          .      .  .  .  .   .     .     .

0    0    0  .  .  .−1   2   − 1
0    0    0  .  .  .  0   − 1    2 ⎦

⎥
⎥
⎥
⎤
 

To obtain the stiffness matrix of advection term 𝐴𝐴𝑎𝑎  we have for 𝑗𝑗 = 1, 2, . . ., 𝑚𝑚  that 

𝐴𝐴𝑎𝑎𝑢𝑢𝑂𝑂  =   ∫   𝑢𝑢′𝑂𝑂𝜑𝜑𝑗𝑗 𝑝𝑝𝜕𝜕
𝐿𝐿 

0  =  �∫  𝜑𝜑𝑗𝑗  𝜑𝜑′1
𝐿𝐿 

0 �  𝑢𝑢𝑂𝑂 ,1𝑝𝑝𝜕𝜕 +  

��  𝜑𝜑𝑗𝑗  𝜑𝜑′2
𝐿𝐿 

0
�  𝑢𝑢𝑂𝑂 ,2𝑝𝑝𝜕𝜕 + . . . + ��  𝜑𝜑𝑗𝑗  𝜑𝜑′𝑚𝑚

𝐿𝐿 

0
�  𝑢𝑢𝑂𝑂 ,𝑚𝑚𝑝𝑝𝜕𝜕 

Using the function (25) with uniform mesh it can be obtained that 

𝐴𝐴𝑎𝑎  =   
1
2
⎣
⎢
⎢
⎢
⎡
0  − 1    0  .  .  .  0    0    0
1   0   − 1  .  .  . 0    0    0
.          .      .  .  .  .   .     .     .
0    0    0  .  .  . 1    0   − 1

0    0    0  .  .  .  0   1    0 ⎦
⎥
⎥
⎥
⎤
 

Similarly, for all the indices   𝑗𝑗 = 1, 2, . . .  ,𝑚𝑚  the mass matrix 𝑀𝑀 is defined as 

𝑀𝑀𝑢𝑢𝑂𝑂  =   ∫ 𝑢𝑢𝑂𝑂  𝜑𝜑𝑗𝑗𝑝𝑝𝜕𝜕
𝐿𝐿 

0 . 

With the function (25) for uniform partition, we get  
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𝑀𝑀 =
ℎ
6

 

⎣
⎢
⎢
⎢
⎡
4    1    0  .  .  .  0    0    0
1   4   1  .  .  .  0    0    0
  .      .     .   .  .  .    .       .

0    0    0  .  .  .  1   4    1
0    0    0  .  .  .  0    1   4 ⎦

⎥
⎥
⎥
⎤
 

Following similar procedures as equations from (13) to (25), the numerical solutions of (9) and (10) with the 
application of Crank-Nicolson method is obtained as 

𝑢𝑢1𝑂𝑂 =  �𝑀𝑀 +  𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷1𝐴𝐴𝑝𝑝) �
−1

 �𝑀𝑀 −  𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷1𝐴𝐴𝑝𝑝) � 𝑢𝑢1(𝑂𝑂−1)   (26a) 

𝑢𝑢2𝑂𝑂 =  �𝑀𝑀 +  𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷2𝐴𝐴𝑝𝑝) �
−1

 �𝑀𝑀 −  𝑘𝑘
2

(𝑤𝑤𝐴𝐴𝑎𝑎  +  𝐷𝐷2𝐴𝐴𝑝𝑝) � 𝑢𝑢2(𝑂𝑂−1)   (26b) 

The advection-diffusion problems, mentioned in (9) and (10), are said to be advection dominated if the diffusion 
coefficients 𝐷𝐷1 and 𝐷𝐷2 are smaller when compared with  𝑤𝑤. Such problems are often studied in numerical analysis as they 
are found to have many varieties of applications [13]. In case of all these problems we may observe almost similar 
numerical behavior as for the pure advection problem. Hence, the discretization of the advection-diffusion equation 
following finite element and standard Galerkin methods might lead to inaccurate solutions. For that reason Taylor-Galerkin 
is introduced so that the accuracy might be improved considerably.  

3.3  Taylor-Galerkin Method 

If the advection term is significantly larger than the diffusion term physically, then advection term dominates and 
diffusion term is negligible, spreading of the pollutant is almost inexistent, and the patch of pollutant simply moves along 
the flow of the river.  

Since the contribution of the diffusion term 𝐷𝐷 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2  is negligible it can be dropped from (13). Thus, the simplified 

equation after dropping of diffusion term while keeping the conditions given in (14) and (15) approximately reduces to the 
form as  

                            𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

  = 0,       0 ≤  𝜕𝜕 ≤ 𝐿𝐿, 𝜕𝜕 > 0                                                          (27) 

The Taylor-Galerkin method consists of combining the Taylor formula that is truncated to the first order as  

     𝑢𝑢(𝜕𝜕, 𝜕𝜕𝑂𝑂+1) =  𝑢𝑢(𝜕𝜕, 𝜕𝜕𝑂𝑂) +  ∆𝜕𝜕 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

(𝜕𝜕, 𝜕𝜕𝑂𝑂) + ∫ (𝑒𝑒 −  𝜕𝜕𝑂𝑂) 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑂𝑂+1

𝜕𝜕𝑂𝑂 (𝜕𝜕, 𝑒𝑒)𝑝𝑝𝑒𝑒                       (28)     From (27), we have  
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

=  −𝑤𝑤 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

   and also from formulae of derivative we also have  𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2  =  𝑤𝑤2 𝜕𝜕2𝑢𝑢

𝜕𝜕𝜕𝜕2. Up on substituting, (28) then it 
reduces to 

         𝑢𝑢(𝜕𝜕, 𝜕𝜕𝑂𝑂+1) =  𝑢𝑢(𝜕𝜕, 𝜕𝜕𝑂𝑂)  −  𝑤𝑤∆𝜕𝜕 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

(𝜕𝜕, 𝜕𝜕𝑂𝑂) +  𝑤𝑤2 ∫ (𝑒𝑒 −  𝜕𝜕𝑂𝑂) 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑂𝑂+1

𝜕𝜕𝑂𝑂 (𝜕𝜕, 𝑒𝑒)𝑝𝑝𝑒𝑒              (29) 

       Further, the integral on the right hand side of (29) can be approximated as 

 ∫ (𝑒𝑒 −  𝜕𝜕𝑂𝑂) 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑂𝑂+1

𝜕𝜕𝑂𝑂 (𝜕𝜕, 𝑒𝑒)𝑝𝑝𝑒𝑒  ≈  ∆𝜕𝜕
2

2
�𝜃𝜃 𝜕𝜕2𝑢𝑢

𝜕𝜕𝜕𝜕2 (𝜕𝜕, 𝜕𝜕𝑂𝑂) +  (1 −  𝜃𝜃) 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝜕𝜕2 (𝜕𝜕, 𝜕𝜕𝑂𝑂+1)�.             (30) 

    Here 𝜃𝜃 ∈ [0,1] is a parameter. In obtaining (30) we set the values 𝑒𝑒 =  𝜕𝜕𝑂𝑂   and  𝑒𝑒 =  𝜕𝜕𝑂𝑂+1. Also, the function 𝑢𝑢𝑂𝑂(𝜕𝜕) is 
approximated to be the same as 𝑢𝑢(𝜕𝜕, 𝜕𝜕𝑂𝑂).  

At this juncture it is appropriate to consider two remarkable situations: If   𝜃𝜃 = 1, the resulting semi-discretized 
scheme is explicit in time and is written as 

𝑢𝑢𝑂𝑂+1 =  𝑢𝑢𝑂𝑂 −  𝑤𝑤∆𝜕𝜕 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

 +  𝑤𝑤2 ∆𝜕𝜕2

2
 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜕𝜕2  

If the space is discretized using finite element method, then Lax-Wendroff finite element schemes might be obtained.  
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In case of  𝜃𝜃 = 2 3⁄  the approximation error in (30) becomes  𝑂𝑂(∆𝜕𝜕4). Also the resulting semi-discretized scheme 
is written as 

                  𝑢𝑢𝑂𝑂+1 −  𝑤𝑤2 ∆𝜕𝜕2

6
 𝜕𝜕

2𝑢𝑢𝑂𝑂+1

𝜕𝜕𝜕𝜕2  =  𝑢𝑢𝑂𝑂 −  𝑤𝑤∆𝜕𝜕 𝜕𝜕𝑢𝑢
𝑂𝑂

𝜕𝜕𝜕𝜕
 +  𝑤𝑤2 ∆𝜕𝜕2

3
 𝜕𝜕

2𝑢𝑢𝑂𝑂

𝜕𝜕𝜕𝜕2                                       (31) 

In (31), the truncation error of the semi-discretization in time is  𝑂𝑂(∆𝜕𝜕3). At this point, a discretization in the space using 
the finite element method leads to Taylor-Galerkin method: for 𝑂𝑂 = 0,1, …  find 𝑢𝑢𝑂𝑂+1 ∈ 𝑉𝑉 such that 

         (𝑢𝑢𝑂𝑂+1,   𝑣𝑣) −  𝑤𝑤2 ∆𝜕𝜕2

6
 �𝜕𝜕

2𝑢𝑢𝑂𝑂+1

𝜕𝜕𝜕𝜕2 ,   𝑣𝑣�  =  (𝑢𝑢𝑂𝑂 ,   𝑣𝑣) −  𝑤𝑤∆𝜕𝜕 �𝜕𝜕𝑢𝑢
𝑂𝑂

𝜕𝜕𝜕𝜕
,   𝑣𝑣�  +  𝑤𝑤2 ∆𝜕𝜕2

3
�𝜕𝜕

2𝑢𝑢𝑂𝑂

𝜕𝜕𝜕𝜕2 ,   𝑣𝑣�  

After applying the definite integral and the method of integration by parts on the second derivative terms it gives 

�𝑢𝑢𝑂𝑂+1𝑣𝑣𝑝𝑝𝜕𝜕
𝐿𝐿

0

+ 𝑤𝑤2 ∆𝜕𝜕
2

6
�
𝜕𝜕𝑢𝑢𝑂𝑂+1

𝜕𝜕𝜕𝜕

𝐿𝐿

0

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝑝𝑝𝜕𝜕 =  �𝑢𝑢𝑂𝑂𝑣𝑣𝑝𝑝𝜕𝜕
𝐿𝐿

0

 −  𝑤𝑤∆𝜕𝜕�
𝜕𝜕𝑢𝑢𝑂𝑂

𝜕𝜕𝜕𝜕
𝑣𝑣𝑝𝑝𝜕𝜕

𝐿𝐿

0

−  𝑤𝑤2 ∆𝜕𝜕
2

3
�
𝜕𝜕𝑢𝑢𝑂𝑂+1

𝜕𝜕𝜕𝜕

𝐿𝐿

0

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝑝𝑝𝜕𝜕 

This yields the linear system 

                   𝑢𝑢𝑂𝑂+1 =  �𝑀𝑀 +  𝑤𝑤2 ∆𝜕𝜕2

6
𝐴𝐴𝑝𝑝�

−1
�𝑀𝑀 −  𝑤𝑤∆𝜕𝜕𝐴𝐴𝑎𝑎 −  𝑤𝑤2 ∆𝜕𝜕2

3
𝐴𝐴𝑝𝑝� 𝑢𝑢𝑂𝑂                                (32) 

In (32), M is the mass matrix; 𝐴𝐴𝑝𝑝  and 𝐴𝐴𝑎𝑎  are the stiffness matrices of diffusion and advection terms respectively.  Thus, 

result (32) can be used for solving (9) and (10) when diffusion terms 𝜕𝜕
2𝑢𝑢1
𝜕𝜕𝜕𝜕2  and 𝜕𝜕

2𝑢𝑢2
𝜕𝜕𝜕𝜕2  are neglected and helps to make the 

advection dominated problems stable. 

     3.4 Improved Sixth Order Runge-Kutta Method 

Higher order Runge-Kutta methods provide alternatives for avoiding the inefficiencies those are associated with 
the corresponding fourth-order formulas. Assuming that round-off errors are under control, such a fourth-order 
approximation requires totally twelve substitutions or functional evaluations. On the other hand, a single application of an 
improved sixth-order formula requires only eight substitutions. Hence, the application of fourth-order will not be as 
accurate as that of an improved sixth-order formula. An improved sixth-order formula performs more number of 
computations in each time step and also, the error decreases very rapidly as step size decreases. Thus, it yields more 
accurate results and also more economical since it requires less number of substitutions. Therefore, an improved sixth-
order formula is preferred to solve the reaction term given in (11) to (12). The algorithm is given as   

𝑢𝑢6(𝜕𝜕0 + ℎ) =  𝑢𝑢0 +  1
840

[41(𝑘𝑘0 +  𝑘𝑘7) + 216(𝑘𝑘2 +  𝑘𝑘6) + 27(𝑘𝑘3 +  𝑘𝑘5) + 272𝑘𝑘4]         (33) 

Here in (33), the quantities 𝑘𝑘𝑖𝑖 ,   ∀ 𝑖𝑖 = 0, 1, … . ,7 represent 

𝑘𝑘0 = ℎ𝑓𝑓(𝜕𝜕0,   𝑢𝑢0) 

𝑘𝑘1 = ℎ𝑓𝑓 �𝜕𝜕0 + 
1
9
ℎ,   𝑢𝑢0 +  

1
9
𝑘𝑘0� 

𝑘𝑘2 = ℎ𝑓𝑓 �𝜕𝜕0 +  
1
6
ℎ,   𝑢𝑢0 +  

1
24

(𝑘𝑘0 + 3𝑘𝑘1)� 

𝑘𝑘3 = ℎ𝑓𝑓 �𝜕𝜕0 + 1
3
ℎ,    𝑢𝑢0 + 1

6
(𝑘𝑘0 −  3𝑘𝑘1 + 4𝑘𝑘2)�                         

𝑘𝑘4 = ℎ𝑓𝑓 �𝜕𝜕0 + 1
2
ℎ,    𝑢𝑢0 + 1

8
(𝑘𝑘0 + 3𝑘𝑘3)�                                                                                                      

𝑘𝑘5 = ℎ𝑓𝑓 �𝜕𝜕0 +  
2
3
ℎ,    𝑢𝑢0 + 

1
9

(17𝑘𝑘0 −  63𝑘𝑘1 + 51𝑘𝑘2 + 𝑘𝑘4)� 
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𝑘𝑘6 = ℎ𝑓𝑓 �𝜕𝜕0 +  
5
6
ℎ,    𝑢𝑢0 + 

1
24

(−22𝑘𝑘0 + 33𝑘𝑘1 +  30𝑘𝑘2 − 58 𝑘𝑘3 +  34 𝑘𝑘4 +  3 𝑘𝑘5)� 

𝑘𝑘7 = ℎ𝑓𝑓 �𝜕𝜕0 + ℎ,   𝑢𝑢0 +  
1

82
(281𝑘𝑘0 −  243𝑘𝑘1 −  522𝑘𝑘2 + 876 𝑘𝑘3 −  346 𝑘𝑘4 −  36𝑘𝑘5 +  72𝑘𝑘6)� 

The reaction term given in (11) – (12) is solved using improved sixth order formula together with initial 
conditions of 𝑢𝑢1 and 𝑢𝑢2and with the inclusion of parametric values.  

4. NUMERICAL SIMULATIONS 

For the purpose of present simulation study, let us set initial conditions for DO and BOD terms as 𝑢𝑢1(𝜕𝜕, 0) =
1  𝑘𝑘𝑂𝑂𝑚𝑚−3 and 𝑢𝑢2(𝜕𝜕, 0) = 6  𝑘𝑘𝑂𝑂𝑚𝑚−3 respectively. Similarly, the boundary conditions for DO and BOD can be set as 
𝑢𝑢1(0, 𝜕𝜕) =  𝑢𝑢1(1, 𝜕𝜕) = 0  𝑘𝑘𝑂𝑂𝑚𝑚−3 and  𝑢𝑢2(0, 𝜕𝜕) =  𝑢𝑢2(1, 𝜕𝜕) = 0  𝑘𝑘𝑂𝑂𝑚𝑚−3 respectively.  Also, we set the parametric values as   
𝛾𝛾 = 1  𝑝𝑝𝑎𝑎𝑂𝑂−1,   𝜔𝜔 = 1 𝑘𝑘𝑂𝑂𝑚𝑚−3   and  𝜆𝜆 = 3  𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1. However, to study the effect of the pollutant transport 
characteristic parameters 𝑤𝑤,  𝐷𝐷1 and  𝐷𝐷2 we will assign varying numerical values. These parameters are assigned different 
values and they are displayed together with the simulated figures. 

4.1. Zero Diffusion   

Let us first consider the case when the diffusion is taken to be negligible. That is, 𝐷𝐷1 = 0  𝑚𝑚2 𝑝𝑝𝑎𝑎𝑂𝑂−1 and 𝐷𝐷2 =
0  𝑚𝑚2 𝑝𝑝𝑎𝑎𝑂𝑂−1. In this scenario, equations (7) - (8) reduce to  

                                   𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

=  −𝑤𝑤 𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

 + 𝜆𝜆(𝜔𝜔 −  𝑢𝑢1) −  𝛾𝛾𝑢𝑢1𝑢𝑢2                                              (34)     

                                    𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

=  −𝑤𝑤 𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

 −  𝛾𝛾𝑢𝑢1𝑢𝑢2,                                                                    (35) 

The initial and boundary conditions are as already mentioned. Furthermore, for this simulation study let us 
assign 𝑤𝑤 = 0.0001 𝑚𝑚 𝑝𝑝𝑎𝑎𝑂𝑂−1. Then result is as follows 

  
Fig.1. Zero diffusion case for   𝑤𝑤 = 0.0001 𝑚𝑚 𝑝𝑝𝑎𝑎𝑂𝑂−1 
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Fig.2. Zero diffusion case for   𝑤𝑤 = 0.1 𝑚𝑚 𝑝𝑝𝑎𝑎𝑂𝑂−1 

 

Fig.3. Including diffusion effect for  𝑤𝑤 = 0.0001𝑚𝑚𝑝𝑝𝑎𝑎𝑂𝑂−1, 𝐷𝐷1 = 0.0001𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1 and 𝐷𝐷2 = 0.0001𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1. 
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Fig.4. Including diffusion effect for  𝑤𝑤 = 0.1𝑚𝑚𝑝𝑝𝑎𝑎𝑂𝑂−1, 𝐷𝐷1 = 0.1𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1 and 𝐷𝐷2 = 0.1𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1. 
 

The numerical result for the DO concentration 
𝑢𝑢1(𝜕𝜕, 𝜕𝜕) is shown in Fig.1 (a). The initial DO concentration 
is set as  𝑢𝑢1(𝜕𝜕, 0) = 1 𝑘𝑘𝑂𝑂 𝑚𝑚−3. The DO concentration has 
the highest concentration at time  𝜕𝜕 = 0, due to reaction 
with BOD and flow of the river it declines slowly and after 
a while it returns back to its normal value 
 1𝑘𝑘𝑂𝑂𝑚𝑚−3 because of the reaeration effect. In Fig.1 (b) we 
have set initial value for pollution concentration BOD to 
be  𝑢𝑢2 (𝜕𝜕, 0) =  6 𝑘𝑘𝑂𝑂 𝑚𝑚−3. The BOD has the highest 
concentration at the initial instance  𝜕𝜕 = 0. But it declines 
slowly with the increase of time  𝜕𝜕, and goes to zero 
ultimately at the location 𝜕𝜕 = 1 downstream. So, clean 
water is available on the spatial boundary at larger times 
due to the effects of rapid flow of the river and the self-
cleaning effects of the reactive term. 

The effect of increased flow velocity is shown in 
fig. 2(a) and 2(b). We assigned 𝑤𝑤 = 0.1 𝑚𝑚 𝑝𝑝𝑎𝑎𝑂𝑂−1 while 
other parametric values remain the same as those values 
simulated in fig.1. It can be observed from figure 2 that as 
𝑤𝑤 increases, the increased BOD zone rapidly decreases 
and goes to zero in a better speed than figure 1. Also DO 
decreases because of its reaction with BOD and high flow 
velocity and after a while it goes to its normal value. 
Hence, with high velocity the river cleans faster than that 
of with lower velocity. 

4.2. Including Diffusion 

The effect on the numerical results when the 
diffusion is included is shown in figures 3 and 4. We 
set  𝑤𝑤 = 0.0001 𝑚𝑚 𝑝𝑝𝑎𝑎𝑂𝑂−1, 𝐷𝐷1 = 0.0001 𝑚𝑚2 𝑝𝑝𝑎𝑎𝑂𝑂−1 and 
𝐷𝐷2 = 0.0001 𝑚𝑚2 𝑝𝑝𝑎𝑎𝑂𝑂−1 in fig. 3.  

Here the figures 3(a) and 3(b) are obtained by the 
simulation study of the system of equations (7) - (8) with 
the initial and boundary conditions and parametric values 
given in section 4. We applied Galerkin finite element 
method with 𝜃𝜃 method where 𝜃𝜃 =  1 2⁄  and it gives the 
Crank-Nicolson for advection-diffusion term.  

We used the peclet number is equal to one unit 
i.e.,  𝑝𝑝𝑂𝑂 =  1  and hence there is no domination between 
advection and diffusion terms. For peclet number less than 
one unit i.e., 𝑝𝑝𝑂𝑂 <  1, the diffusion term dominates over 
the advection term and the analysis is given in [28]. For 
the peclet number greater than one i.e., 𝑝𝑝𝑂𝑂 >  1, the 
advection term dominates over the diffusion term and the 
analysis is given in Figures 1 and 2.  

We also applied improved Runge-Kutta method 
of order six for reaction term of the model (7)-(8). In case 
when the diffusion term is included, all variations along 
both the flow direction and depth of the river are ignored. 
But, the variations at a cross-sectional area of the river of 
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width one unit i.e., normalized are considered. At time =
0, waste water is poured into the water, all over. But we 
assume that the water at the boundaries cleans. So there, 
the DO is 1, and the BOD is zero. But then, in addition to 
the effect of advection term and the self-cleaning effect 
from the reactive term, we get diffusion of the clean water 
from the boundaries, which makes the river cleans faster 
than if we did not have this effect. Comparing figure 1 and 
figure 3, both DO and BOD concentration profiles of 
figure 3 has faster changing than figure 1 for the same flow 
velocity value 𝑤𝑤 = 0.0001𝑚𝑚𝑝𝑝𝑎𝑎𝑂𝑂−1.     

The effects of increased diffusion coefficients are shown in 
fig.4 (a) and (b). We give 𝐷𝐷1 = 0.1𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1 and 𝐷𝐷2 =
0.1𝑚𝑚2𝑝𝑝𝑎𝑎𝑂𝑂−1 while other parameter values remain the 
same values as those values simulated in fig.3. It can be 
shown that as diffusion coefficients 𝐷𝐷1 and 𝐷𝐷2 increase, 
the increased BOD zone is decreases dramatically and 
tends to zero. And DO also decrease immediately because 
of reaction with BOD and high diffusion effect and after a 
while it goes to its normal value.  

5. CONCLUSION 

In the foregoing sections, we have presented a 
mathematical model of DO concentration interaction with 
BOD in the river. The model shown in the form of a 
coupled pair of nonlinear advection-diffusion-reaction 
equations, which is required to solve the DO concentration 
in coupled with BOD at space and time, and have 
investigated the effects of advection and diffusion on the 
degradation of BOD in the river. We have also presented 
efficient numerical methods after splitting the problem into 
two unsteady sub-problems and solved the splited 
problems based on the standard Galerkin finite element 
and Taylor-Galerkin methods with linear piecewise basis 
function and improved sixth order Runge-Kutta for solving 
the system model. Two test cases have been performed. 
These are zero diffusion and including diffusion effects. 
We have simulated these two test cases by setting some 
appropriate initial and boundary conditions and parametric 
values. From the profile of varying advection and diffusion 
term, we saw that the rate of advection and diffusion is 
high; the concentration of BOD decreases faster. Thus, this 
shows that increasing the factors and parameters like DO, 
river velocity, diffusion and reaction rate helps us to get 
clean water within a short time by removing biological 
pollutants or BOD in the river. This model and its 
solutions will aid in decision support on restrictions to be 
imposed on farming and urban practices.   
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