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Abstract - Lately, strange waves originating from an unknown 
source even under mild weather conditions have been 
frequently reported along the coast of South Korea. These 
waves can be characterized by abnormally high run-up height 
and unpredictability, and have evoked the imagination of many 
people. However, how these waves are generated is a very 
controversial issue within the coastal community of South 
Korea. In 2006, Shukla numerically showed that extremely 
high waves of modulating amplitude can be generated when 
swell and locally generated wind waves cross each other with 
finite angle, by using a pair of nonlinear cubic Schrodinger 
Equations. Shukla (2006) also showed that these waves 
propagate along a line, that evenly dissects the angles formed 
by the propagating directions of swell and wind waves. 
Considering that cubic Schrodinger Equations are only 
applicable for a narrow banded wave train, which is very rare 
in the ocean field, Shukla (2006)'s work is subject to more 
severe testing. Based on this rationale, in this study, first we 
relax the narrow banded assumption, and numerically study 
the feasibility of the birth of freak waves due to the nonlinear 
interaction of swell and wind waves crossing each other with 
finite angle, by using a more robust wave model, the Navier-
Stokes equation.  

Keywords: Freak waves, Constructive Wave-Wave Interaction, 
Navier-Stokes Eq., Obliquely Colliding Waves. 

I. INTRODUCTION 

Since the sudden overtopping of the breakwater at 
Boryung in 2008, which eventually claimed several lives, 
freak waves have started to draw attention in the coastal 
community of South Korea. These waves can be 
characterized by abnormally high run-up height and 
unpredictability, which are unusual enough to evoke the 
imagination of many people. Freak waves are usually 
known to originate from seemingly nowhere even under 
mild weather conditions, and have been reported several 
times along the eastern and southern coast of South Korea.  

Even though a great deal of effort has been made over the 
last several years, no consensus has been reached about 
under what situations these freak waves can be generated, 
and it remains an on-going problem. Up to now, several 
views have been proposed, and many examinations of 
their validity are still underway. Some people claim that a 
freak wave is caused by wave energy focusing due to 
chance superposition of sinusoidal waves with appropriate 

phase and spatial orientation, and an increase of wave 
amplitude occurs randomly. In order for these 
explanations to be persuasive, the likelihood of an 
occurrence of freak wave should follow uniform 
distribution. However, locations of freak wave formation 
do not seem to be completely random, and in fact there 
have been several areas which for a long time have held 
notoriety as freak wave hotbeds such as the coast of South 
Africa.  

Based on the fact that strong currents are a common 
feature of the region known as freak wave hotbeds, there 
is also a view following Lavrenov (1998), and White and 
Fornberg (1998) that a freak wave is the focus of wave 
energy due to the current moving in the opposite direction 
of the waves. A rip current that we can frequently observe 
along the coast can act as the aforementioned counter 
current. Rip currents decay as they move into deeper 
waters, and this feature of rip current allows the waves 
moving against it to draw near to their forerunners and 
allows for the wave energy to be concentrated in a 
significantly smaller spatial region than it otherwise would 
have been. While the preceding situation is perhaps the 
simplest to understand, this theory is only applicable in the 
realm of quasi unidirectional waves. Among others, a few 
researchers claim that edge waves, also known as surf 
beats, underlying an ever present swell of slowly 
modulating amplitude in a bound mode can cause unusual 
run-up after being released from the swell by breaking, 
since edge waves can be trapped near the coast by 
refraction (Guza and Thornton, 1981). 

 
Fig. 1 Edge wave along the coast in trapped mode 
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Lately, Shukla (2006) devised an innovative idea free 
from the aforementioned drawback of present theories, 
and Shukla's work (2006) will be hailed as the beginning 
of new era in the study of freak wave. Using a pair of 
cubic nonlinear Schrodinger equations, Shukla (2006) 
numerically showed that a new instability is evoked when 
an ever present swell near the shore collides with locally 
generated wind waves with finite angle less than 62.5°. At 
the initial phase of instability, a wave packet of 
abnormally large amplitude is observed to propagate along 
the direction which evenly dissects the angles formed by 
propagating directions of swell and wind waves. This new 
coherent feature inspired Shukla (2006) to name this 
phenomenon ‘constructive instability’, which closely 
mimics every facet of the freak wave. Later, this new 
instability is saturated by the broadening of wave 
spectrum, which will enhance dispersion of waves such 
that the wave system is re-stabilized via phase mixing of 
the wave envelope, and finally wave amplitude decreases.  

In this study, Shukla (2006) first derived a dispersion 
relationship for colliding waves from cubic nonlinear 
Schrodinger equations, from which he obtained the growth 
rate of side disturbance on a horizontal plane, which 
strikingly differs from that found in the well-known 
Bejamin Feir instability for one wave system. Shukla 
(2006) also shows that growth rate depends on the x, y 
direction wave number of side band disturbance and the 
angle formed by propagation directions of two waves. 
Finally, the growth rate of side disturbance is sensitive to 
the collision angle, and if the collision angle is larger than 
65°, the constructive instability disappears.  

However, considering the fact that Shukla (2006)'s work 
relied heavily on nonlinear cubic Schrodinger equation, 
which is only applicable for narrow banded waves, Shukla 
(2006)'s work is subject to more severe testing since 
narrow banded waves are very rare in the ocean field. 

Following this rationale, we first relax the narrow band 
assumption, and proceed to numerically study the 
feasibility of the formation of freak waves by the collision 
of two waves in a more general sea state. As a wave 
driver, we use the Navier-Stokes equation. 

II. CURRENT VIEW ON THE FORMATION OF 
FREAK WAVES 

Most of the past studies on freak waves relied heavily on 
the nonlinear cubic Schrodinger equation due to its ease of 
being integrable after the inverse scattering transformation 
method was proposed. Coupled nonlinear cubic 
Schrodinger equation can be written as  
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where A and B are, respectively, the amplitude of slowly 
varying wave envelopes such that the surface elevation are 
given by  

( )1 .
2

i kx ly t
A Ae c cωη + −= +               (3) 

( )1 .
2

i kx ly t
B Ae c cωη − −= +               (4) 

 
Fig. 2 Definition sketch 

In Eq. (1), (2), (3) and (4), c.c denotes complex conjugate, 
/ 2gx o oC kω κ= and / 2gy o oC lω κ= are, respectively, the 

group velocity component in the x and y direction, 

( )2 2 42 / 8o ol kα ω κ= −  and ( )2 2 42 / 8o ok lβ ω κ= − are the 

group velocity dispersion coefficients, 2 / 2o oξ ω κ= is the 
nonlinear self-interaction coefficient, and the nonlinear 
cross  interaction coefficient , ζ,  is given by 
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where oω , the angular frequency of the carrier wave, is 

related to oκ , the wave number of the carrier wave, by the 

deep water dispersive relation o ogω κ= .  

Considering the facts that in the derivation of Eq. in Eq (1) 
and (2), perturbation method called multiple scale method 
and solvability condition were evoked, cubic nonlinear 
Schrodinger is only applicable to narrow banded waves, 
which is rare to find in the ocean field.  

The stability of Stokes waves have been questioned for 
many years based on our experience in the laboratory, but 
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it was Bejamin and Feir (1967) who showed that Stokes 
waves are unstable to collinear side band disturbances, 

( )i Kx te −Ω , the wave number of which are satisfying the 
following condition  

2 o
K aκ
κ

=                   (6) 

In this case, the side band disturbance grows exponentially 
with time, and hence is unstable.  

Later, this phenomenon becomes to be called as Bejamin 
and Feir (1967) instability, and plays a crucial role in our 
understanding how wind wave spectrum evolves. Once 
Bejamin and Feir (1967) instability gets underway, wave 
spectrum are getting broadened, and wave groups gets 
complicated such that we can’t find any coherence. In this 
rationale, Bejamin and Feir (1967) instability are also 
called as destructive instability or defocusing instability. 
Sub-harmonic disturbance induced by the wave-wave 
interaction in the evolution of wind wave spectrum is 
another name of Bejamin Feir wave. Benney and Roskes 
(1969) further studied side band disturbances, 

1 2( )i K x K x te + −Ω , which obliquely propagated to the primary 
Stokes waves. According to Benney and Roskes (1969), in 
the K1 and K2 plane, there are always regions in which the 
Stokes waves are unstable, and the likelihood of instability 
is greater for greater water depth.  A heuristic explanation 
of Bejamin and Feir (1967) instability has been given by 
Lighthill (1978). Consider a Stokes wave train with a 
slowly modulated envelope. The crests near a peak of the 
envelope are faster than those on either side of the peak, 
and, therefore, tend to shorten the waves ahead and 
lengthen the waves behind. Now, the group velocity in 
deep water is larger for longer waves. The rate of energy 
transport is lower in front and higher behind, hence 
accumulation occurs near the envelope peak, whose height 
must increase. Similarly, the trough of the envelope will 
tend to decrease, resulting in instability(see Fig.3).  

 
Fig. 3 Stokes waves of slowly modulating amplitude 

First, Shukla (2006) notes that crossing sea state is a 
hotbed for freak waves, and envisions that nonlinear 
interaction between two colliding waves can be the driving 
mechanism for freak waves. In this context, Shukla (2006) 

introduced a small harmonic perturbation with the wave 
vector ( ),=K K L around the equilibrium envelope like  

( )
1

i Kx Ly t
oA A eε + −Ω+ , 

( )
1

i Kx Ly t
oB B eε + −Ω+       (7) 

 

, and from Eq. (1) and (2), obtained the nonlinear 
dispersion relation which can be written as   
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where  

( )( )22 2 2 2 2
1 2 oK L KL K L KL Aα β γ α β γ ξΩ = + − + + −  

( )( )22 2 2 2 2
2 2 oK L KL K L KL Bα β γ α β γ ξΩ = + + + − +  

( )( )22 2 2 2 2 2c oK L KL K L KL Bα β γ α β γ ξΩ = + + + − +  

From the above nonlinear dispersion relation, it is obvious 
that the frequency of perturbation, Ω , depends on the 
wave amplitude Ao and Bo, the angle between the wave 
direction and the dichotome θ (see Fig. 4, 5), wave 
numbers K and L. Soon after, Shukla (2006) numerically 
solved the nonlinear dispersion relation for Ω  by varying 
K and L, and presented the growth rate of side band 
disturbances (the imaginary part of Ω ) such as follows.  

 
Fig. 4 The normalized growth rate plotted as a function of K and 
L. The left upper and lower panels show the cases with a single 

wave, respectively, while the right panel shows the case of 
interacting waves ( / 8θ π= ) [from Shukla et al. (2006)] 

Left hand panels correspond to the single wave cases 
studied by Benney and Roskes (1969), which exhibit the 
standard Bejamin and Feir (1967) instability. Right hand 
panels show the cases of two interacting waves. It is 
obvious that two obliquely colliding waves give rise to a 
new instability, which is strikingly different from the one 
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in the single wave cases. These differences can be 
summarized such as follows.  

 
Fig. 5 The interaction between two waves, initially with equal 

amplitudes 10.1o oA B κ −= = and a propagation angle of  

/ 8θ π= relative to the dichotome. Added to the initially 
homogeneous wave envelopes is a low-amplitude noise of order 

3 110 κ− − to give a seed to the modulational instability [from 
Shukla et al. (2006)]. 

First, for the single wave case, the growth rate has larger 
values for side band disturbances propagating to the 
primary waves with more or less 45o±  whereas for the 
cases of interacting waves, the growth rate reaches its 
maxima in the direction of the dichotome, and the 
maximum growth rate is more than twice as large as the 
one for single wave cases.  

Second, unlike the destructive instability (defocusing 
instability) where waves dissolved into a wide spectrum of 
waves as can be found in the Bejamin and Feir instability, 
in the initial phase of this new instability, two waves are 
strongly correlated such that wave energy is localized into 
well defined wave packets of large amplitude which are 
propagating along the line, which evenly dissect the angles 
formed by propagating directions of two colliding waves.  

Shukla (2006) mentioned that the propagating direction of 
aforementioned wave packets reflects the facts that the 
growth rate reaches its maxima in the direction of 
dichotome.  

Third, at later, two waves are decoupled, this new 
instability will be saturated by the broadening of wave 
spectrum, which will enhance dispersion of waves such 
that wave system is re-stabilized via phase mixing of wave 
envelope, and finally wave amplitude decreases. 

These behaviors are very appealing since the new coherent 
features like the well defined wave packet of large 
amplitude closely resembles every facets of freak wave, 
and leads Shukla (2006) to propose that two colliding 
waves might interact nonlinearly in constructive way to 
produce large amplitude freak waves in the oceans. 

Here, it is worth mentioning that with advent of wave 
packets, a kurtosis

 
defined as 

4
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,
µ
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( )i
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would increase, which is also consistent with our 
experience of freak waves. 

III. NUMERICAL MODEL 

A. Hydrodynamic model 

Wide banded irregular waves can be more accurately 
described using the more robust wave driver like the 
Navier Stokes Eq. rather than the nonlinear cubic 
Schrodinger Eq. In this context, as a wave driver, we used 
the Navier Stokes Eq., and mass balance Eq., the 
numerical integration of which is carried out using highly 
accurate numerical method known as VOF (volume of 
fluid).  

Upon introducing partial area coefficient Af and partial 
volume coefficient Vf to express the geometric 
characteristics of solids in fixed calculation network, we 
can write the basic eq. such as (see Fig.6) 
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where ρ denotes fluid density, u denotes the velocity, and 
F is the volume fraction. If fluid cell is fully immersed, F 
has a value of 1. If fluid cell is partially immersed, or 
dried up, it is converged to 0. 

 
Fig. 6 Schematic showing the calculation of area and volume 
fraction coefficients, Af and Vf for solid object (shaded area) 

imbedded in a rectangular grid. 
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B. Numerical wave tank 

Numerical simulation is implemented on the numerical 
wave tank of 304m x 248m (see Fig.7). Along the wall of 
wave tank, we deploy the artificial beach of uniform slope 
(1:4) in order to minimize the reflection by enforcing 
wave breaking (see Fig.7). 

 
Fig.7 Layout of numerical wave tank 

C. Generation of random waves 

We numerically generate irregular waves using the 
random phase method. In the Random Phase Method, 
wave trains are generated by combining the discrete 
amplitude wave spectrum corresponding to the target 
wave energy spectrum with a random phase spectrum 
synthesized from a random number generator. This yields 
the Fourier Transform of a time series with the desired 
discrete power spectrum. The corresponding time series 
can be obtained by Inverse Fourier Transformation. 

The steps of calculating a time series using the Random 
Phase Method can be summarized as 

1. Define a target wave energy density spectrum. In this 
study, we use the JONSWAP (the Joint North Sea Wave 
Project) spectrum, which can be written as  

( )2
2 2exp2 4

2

5 4

5( ) exp
4

p

pp pg
S

ω ω

σ ω

ς

α ω
ω γ

ω ω

 − − 
  

 
= −  

 
  (12) 

where pω  is the peak frequency, γ  is the peak 

enhancement parameter, and pα  is the Phillips parameter. 

Here γ  is in the range 1–6 for ocean waves, while pα  is 

in the range 0.0081–0.1; the values 1γ = and 0.081pα =  
give the spectrum of fully developed wind seas, while the 
larger values are observed in water tank experiments. We 
will use 0.025pα = , 3γ = , and 0.08σ =  which are 

consistent with Shukla (2006). Since the wave spectrum is 
concentrated around pω  , we will use o pω ω=  and 

2 /o p pk k gω= =  in the evaluation of α  and β  in Eq. (1) 

and (2). 

 
Fig.8 Partition of target wave spectrum 

 

2. Choose the sample frequency, sf , and the resolution of 
the spectrum (half the number of Fourier components) N. 
This yields a frequency domain resolution of 

/sf f N∆ = (see Fig. 8). Calculate the discrete wave 

energy spectrum ( )ifςσ  

( ) ( )2
if S i f fς ςσ = ∆ ×∆ , , 1, 2, ,if i f i N= ∆ =   (13) 

3. Determine the discrete paddle-displacement energy 
spectrum. The far field transfer function for small 
amplitude regular waves was given by Biesel (1951) in the 
following form for piston wave paddles: 

22sinh
sinh coso

H kh
S kh kh kh

=
+

 

Utilizing the above transfer function, the discrete paddle-
displacement energy spectrum ( )2

x ifσ  can be written as  

( ) ( )2
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i
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f
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Where H is the wave height, So is the stroke of the piton, k 
is the wave number, and h denotes a water depth.  

4. Calculate the N complex Fourier coefficients 

( ) ( ) ( )i i iC f A f iB f= +  by picking a random phase, 

( )ifψ , between 0 and 2π for all frequencies smaller than 
the Nyquist frequency, fn = fs/2 , where A and B are given 
by  

( ) ( ) ( )( )
2

cos
2

x i
i i

f
A f f

σ
ψ=           (15) 
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( ) ( ) ( )( )
2

sin
2

x i
i i

f
B f f

σ
ψ=   (16) 

5. Mirror the N Fourier components into the Nyquist 
frequency Nf  in order to obtain a hermitian Fourier 
Transform: 

1, 1, 2, ,N i N iC C i N∗
+ − += =   

Where upper-script * denotes complex conjugate. 

6. Apply the inverse Fourier Transform to ( )iC f  and 

calculate the time series of the control signal for the wave 
paddle such as follows 

( ) ( ) 2i ftX t C f e dfπ−= ∫     (17) 

Fig.9 demonstrates sample time series of randomly 
simulated wave paddle displacement.  

 
Fig.9 Time series of randomly simulated wave paddle 

displacement 

IV. NUMERICAL RESULTS 

To test the feasibility of formation of freak waves by two 
obliquely colliding waves like swell and local wind waves 
in more general sea state, we carry out numerical 
simulation by relaxing the narrow banded assumption. We 
assume both of two random wave trains follow 
JONSWAP (the Joint North Sea Wave Project) spectrum, 
peak period and significant wave height of which are 4s, 
9m, respectively.  

A.Normally colliding case, 2 90oθ =  

It was Phillips (1960) who introduced seemingly 
complicated concept called nonlinear resonance wave-
wave interaction. As it is indispensable for our 
understanding of how wind wave spectrum evolves, it 
seems like that nonlinear resonance wave-wave 
interactions play a crucial role for our understanding of 
propagating direction of wave packet. Hence, here, we 
erect to briefly summarize these concepts.  

In a case that three primary free waves are involved in the 
interaction, after Taylor series expansion with respect to 
z=0, perturbation terms like 1 2 3k k ke ± ± , 1 2 3eω ω ω± ± are 
generated in free surface dynamic boundary condition. For 

resonance among a tetrad of wave numbers, the following 
conditions  

1 2 3 4 0k k k k± ± ± =   (18) 

1 2 3 4 0ω ω ω ω± ± ± = , r rgkω =    

must be or nearly satisfied. For many sign combinations, 
no solutions are possible, but it can be shown that there do 
exist solution sets to (Phillips, 1977). 

1 2 3 4k k k k+ = + , 1 2 3 4ω ω ω ω+ = + , r rgkω =  (19) 

Using a geometrical construction by Simmons (1969), we 
can depict solution sets satisfying Eq. (19) such as follows 

 

(a) 

 

(b) 

Fig. 10 Example of resonance diagram in wave number, 
frequency space illustrating the four components that satisfy the 

resonance condition in Eq. (18) 

where the dispersion relation gkω =  is represented by 
trumpet shaped surface in three dimensional spaces. For 
the configuration shown in Fig. 8a, the original surface 
from O and the one from O’ intersect at four points. The 
vectors to any two of them from O, and from them to O’ 
evidently specify a set that satisfies Eq. (19). In three 
dimensions, the intersection of the two surfaces defines 
two closed loops; as all wave numbers are more or less of 
equal magnitude, O’ is moved vertically and two loops 
(see Fig 8b) merge when two surfaces just touch, opening 
out into a single loop as the contact disappears. A 
projection of the family of the loops onto the wave 
number plane is shown in Fig. 9, specifying the sets of 
wave numbers for surface waves capable of undergoing 
resonant interactions (Phillips, 1976).  
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Fig. 11 The family of curves in the wave number plane defined 

by the resonance conditions in Eq. (19) 

In the meanwhile, Longuet-Higgins (1962) suggested a 
convenient case for experimental study to test 
aforementioned resonant wave interactions. Later, 
Longuet-Higgins and Smith (1966) mechanically 
generated two mutually perpendicular waves along 
adjacent walls of a square tank, and succeed to measure 
the 4th component waves (k1 in Fig. 11) to initially zero, 
and grow with increasing distance across the tank as a 
result of the interaction. In this particular set of resonance 
condition, two of the primary wave numbers are 
coincident. In this case, the resonance conditions in Eq. 
(19) reduce to   

1 2 32k k k+ = , 1 2 32ω ω ω+ = , r rgkω =   (20) 

where 2k and 3k  are mutually perpendicular. Again, under 
geometrical construction by Simmons (1969), this 
resonance condition can be depicted such as 

 

 
Fig. 10 Resonance conditions suggested by Longuet-Higgins 

(1962b) 

. Noting that the resonance condition envisioned by 
Longuet-Higgins (1962) can provide a very challenging 
task for the verification of numerical model proposed in 
this study, we carry out numerical simulation using similar 
wave conditions with Longuet-Higgins and Smith (1966). 

We generate two mutually perpendicular monochromatic 
waves using two wave paddles which are squarely 
deployed. In Fig. 12, we plot snapshot of numerically 
simulated wave field at 48.753 s.  

 

Fig.12 Snapshot of numerically simulated wave field 
where two waves are colliding with an angle of 90o 

B. Obliquely colliding case, 2 45oθ =  

Following Shukla (2006), constructive instability 
disappears when the collision angle is larger than 70.6°, 
but no explanation of its physical background was 
mentioned. Following this rationale and to unveil the 
underlying mechanism of constructive instability, we carry 
out the numerical simulation by adjusting the collision 
angle as 45°, and keep the wave condition and water depth 
same as in the previous case.       

In Fig. 13, we plot sequential snapshots of numerically 
simulated wave field from t=27.3s to 48.s. At t=42.9, 43.2, 
43.8, 44.2s, it is clearly visible that a wave packet of huge 
amplitude is propagating along the direction which evenly 
dissects the angles formed by propagating directions of 
two waves. 

   
t=27.3s       t=31.2s 

   
t=5.1s      t=37.9s 

   
t=38.2s       t=38.5s 
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t=38.9s       t=39.7s 

   
t=42.9s       t=43.2s 

   
t=43.8s        t=44.2s 

   
t=48.0s        t=38.2s 

Fig.13 Numerically simulated wave field 

C. On the propagation direction of freak wave 

Even though Shukla's work (2006) put very valuable step 
stone to solve the mystery of freak wave, Shukla (2006) 
did not provide any physical explanation why wave packet 
in the initial phase of constructive instability is heading to 
dichotome. In this section, we are trying to answer this 
question of great engineering value. Now, we have enough 
grounds to believe that nonlinear resonance wave-wave 
interaction is underlying mechanism of the new instability 
occurring in crossing sea state. Following a geometrical 
construction by Simmons (1969), resonance condition in 
obliquely colliding case in 4.2 can be depicted such as the 
following 

 

(a)1st resonance 

 

(b)2nd resonance 

 

(c)3rd resonance 

Fig.14 the propagation direction of freak wave depicted in 
the resonance diagram. 

That is, first, the interaction between k2 and 2k3 evokes k1, 
which corresponds to the lower branch in the instability 
diagram by Shukla (2006). Hereafter we call it the 1st 
resonance. As soon as k1 is emerged from the 1st 
resonance, the interaction between k1 and 2k3 gets under 
way, and results in k4 which corresponds to the upper 
branch in the Shukla’s  (2006) instability diagram. With 
the multiple resonance interactions occurring in queue, 
more wave energy are transferred to the wave component 
aligned with the x axis. With the aforementioned 
resonance sequence in mind, we can explain why a wave 
packet of abnormally large amplitude heading to the 
dichotome is emerging at the initial phase of instability. 
Here, it is worth mentioning that a set of four wave modes 
that do not satisfy the resonance condition in equation (20) 
may still undergo significant interaction since the small 
phase mismatch can be offset by amplitude dispersion. 
Hence the growth rate of large value in Fig. 13 is widely 
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distributed when the wave numbers are small, and shrinks 
as wave numbers are getting larger, and interaction are 
more easily triggered when wave numbers of similar 
magnitude. 

VI. CONCLUSION 

Despite of a great deal of effort, it seems like that we don’t 
have enough information to answer the simple question 
like under what situation freak waves can be triggered, yet. 
Considering the fact that nowadays, freak waves are more 
frequently observed, mystery about the formation of freak 
waves is an overdue task partly hampered by our addiction 
to a simplified wave driver like the Boussinesq equation 
which often falls short in the explanation of highly 
nonlinear phenomenon like strong wave-wave interaction. 

Lately, Shukla (2006) extended the stability analysis 
similar with the one used in the classical stability analysis 
of Stokes waves exposed to collinear side band 
disturbances, to two obliquely colliding wave trains based 
on the nonlinear cubic Schrodinger equation, and observed 
new instability equipped with many features that can’t be 
found in the conventional instability.  

Usually, the spectra of waves that go through instability 
are getting broadened, and wave groups get complicated 
such that we can’t find any coherence. Hence, up to now, 
instability is known to be destructive as in Bejamin and 
Feir (1967) instability. 

However, at the initial phase of this new instability, a 
wave packet of abnormally large amplitude is observed to 
propagate along the direction which evenly dissects the 
angles formed by propagating directions of two wave 
trains. This new coherent feature inspired Shukla (2006) to 
name this phenomenon ‘constructive instability’, which 
closely mimics every facet of the freak wave.   

It is needless to say that Shukla's work (2006) put very 
valuable step stone to solve the mystery of freak wave, but 
it is also true that they left huge room to improve since 
Shukla's work (2006) is only limited to narrow banded 
waves which is rare in the ocean field and Shukla (2006) 
did not provide any physical explanation why wave packet 
in the initial phase of constructive instability is heading to 
dichotome.  

Following this rationale, we first relax the narrow band 
assumption, and proceed to numerically study the 
feasibility of the formation of freak waves by the collision 
of two waves in a more general sea state. As a wave 
driver, we use the Navier Stokes equation.  

In the numerically simulated wave field, we can 
successfully observe a wave packet of abnormally large 
amplitude to propagate along the direction which evenly 
dissects the angles formed by propagating directions of 
two wave trains. We also show why the maximum growth 

rate is more than twice as large as the one for single wave 
cases, and growth rate reaches its maxima in the direction 
of dichotome by using a geometrical construction by 
Simmons (1969). It turns out that the multiple resonance 
interactions occurring in queue play a crucial role in the so 
called constructive instability.  
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