INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Issue 100, Volume 35, Number 01, 2017

ISSN: 2349-4689

Multi-Core Processor System on A Chip Using
LLeon3 Processor

Dipesh D. Somani

Research Scholar, Department of Electronics Engineering

Shri Ramdeobaba College of Engineering and Management, Nagpur

Abstract - With the development of I1C design and architecture,
embedded system ranges from a single microprocessor 10 a
complex multi-core processor with an embedded operating
system (OS). A multi-core processor is a single integrated
circuit in which two or more processors have been attached for
enhanced performance and more efficient simultaneous
processing of multiple tasks. This paper presents a dual-core
embedded system designed with LEON3 open source
processors. Dual-core processor has been developed with
centralized shared memory for process sharing and shared bus.
The system design is implemented using Cyclone 11 FPGA. The
dual core system is tested with matrix multiplication using
multi-threading using pthreads under the embedded operating
system (eCos) to enhance the performance of the system in
terms of its speed. Dual core processor system designed using
LEONS processor accelerates the matrix multiplication by 1.81
times as compared 10 single core processor system.

Keywords— LEON3 Multi-Core Processor, pthreads,
Multithreading, Embedded Configurable Operating System
(eCos), Cyclone 11 FPGA.

I INTRODUCTION

With the growing needs for advanced functionalities,
communication speed and performance requirements in
modern embedded systems, it is NOW necessary to integrate
multi-core processors in the system, preferably on a single
chip. Multi-core processor systems consist of two or more
independent cores. A processing part of a processor system
is called as Core. Multi-core processors have the potential
to run applications more efficiently than single-core
processors. Multi-core processor based systems are
complex because they contain multiple or share resources
and execute multiple tasks, which interact with each other
in complex ways. Deploying an SMP system with shared
memory is the ability to use multi-core processors
simultaneously to execute different tasks and the shared
resources based system uses same resources between
multiple tasks executing simultaneously.

Therefore, the systems require an operating system to
manage the resources and tasks [1]. The multi-core
architectures have the potential to satisfy the timing
performance when the special coding techniques are
incorporated like multithreading using pthreads.

WWW.ijspr.com

To design a multi-core embedded system Leon3 soft core
processor is used. The LEON3 is a synthesizable VHDL
model of a 32-bit processor compliant with the SPARC V8
architecture. The model is highly configurable which is
particularly suitable for MP-SOC designs [2]. For case
study matrix multiplication using multi-threading is used.
Multi-threading is supported by an operating system eCos.
The eCos is a real-time operating system with SPARC port
supports LEONS and its standard on-chip peripherals. The
highly configurable nature of eCos allows the operating
system to be customized to precise application
requirements for delivering the best possible run-time
performance and an optimized hardware resource
footprint. Multi-core embedded system is designed using
LEONS soft core processor and it is implemented on
Altera Cyclone Il FPGA emulation board. An application
of matrix multiplication using pthreads for implementing
multi-threading is executed on designed embedded system
through eCos and got an acceleration of 1.81 times in
multithreaded matrix multiplication over single core
processor system.

1. LEON3 PROCESSOR

The LEON3 SPARC V8 processor architecturchas been
designed to fit into a large variety of applications
requirement. It can also be combined with the IEEE-STD-
754 compliant Floating Point Unit (GRFPU Lite). The
architecture is centered on the AMBA Advanced High-
speed Bus (AHB), to which the LEON3 core and other
high-bandwidth units are connected, while low-bandwidth
units are connected to the AMBA Advanced Peripheral
Bus (APB) which is accessed through an AHB to APB
Bridge. The architecture is shown in figure 1 [3].

The LEONS3 core has integer unit implements the full
SPARC V8 standards, including hardware multiply and
divides instructions. The numeral of register windows is
configurable within the limit of the SPARC standard (2 -
32), with a default setting of 8. The pipeline consists of 7
stages With a separate instruction and data cache interface
(Harvard architecture). Cache system consisting of a
separate instruction and data cache, and each can be
configured with 1-4 sets, 1-256 Kbyte/set, 16 or 32 bytes

IJSPR | 56

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Issue 100, Volume 35, Number 01, 2017

per line.The data cache performs bus-snooping on the
AHB bus. The LEON3 integer unit has interfacesfor a
floating-point unit (FPU) and a custom co-processor. TWo
FPU controllers, one availablefor the high-performance
GRFPU (available from Gaisler Research) and one for the
Meiko FPU core (available from Sun Microsystems). The
floating-point processor unit and co-processor unit execute
inparallel with the integer unit, which

Fe—-——=

Senal Ethemat paekne CaNZD
LFONA LECHS USB | |DogLik | |Daek| | Mac Link Link
Processor

Processor

- o AMRL
AH| eIy O'AFD
Conirolier Controler Brdge _I_
e o e
]

b = -
132 bite mamory bug I l
L] "
|

m BEW gon BEvks pee
PROM || 10 | |sORAM PSUFRSZR WDGG

Fig. 2.1. Dual Core Leon3 Processor [3]

does not block the operation unless a data or resource
dependency exists. A SPARC V8 Reference Memory
Management Unit (SRMMU) can be enabled (optional).
The SRMMU implements the full SPARC V8 MMU
specification and has mapping between multiple 32-bit
virtual address spaces and 36-bit physical memory. The
LEONS pipeline includes functionality to provide non-
intrusive debugging on target hardware. To aid software
debugging, any or all four watch-point registers can be
enabled. Each register can cause a breakpoint setup on an
arbitrary instruction or data address range. When the
(optional) debug support unit is attached, the watch-
pointregisters can be used to enter debug mode. A debug
support interface gives full access to all processor registers
and caches. An internal trace buffer can monitor and store
executed instructions, which can be read out laterover the
debug interface. LEON3 also supports the SPARC V8
interrupt model with a total of 15 asynchronous interrupts.
The interrupt interface delivers functionality to generate
and acknowledge interrupts. The cache system implements
an AMBA AHB master to load and store data to and from
the caches. The interface is compliant with the AMBA-2.0
standard. Incremental bursts are generated to optimize the
data transferduring line refill. LEON3 processor core
implements a power-down mode. It will halt the pipeline
and caches until the next interrupt. A suitable clock-enable
signal is produced by the processor to implement clock-
gating.It is designed to be use in multi-core processor
systems. Each processor core has a unique index to allow
processor core enumeration. The write-through caches and
snooping mechanism confirms memory coherency in
shared-memory systems [4][5].

WWW.ijspr.com

ISSN: 2349-4689

I1. REAL TIME OPERATING SYSTEM

kEmbedded Configurable Operating System (eCos) is a
real-time operating system deeply designed for embedded
applications. It is also an open source and royalty-free
operating system. eCos is a highly configurable operating
system whichcan be configured to application specific
requirementsand bringing the best possible run-time
performance, and an optimized hardware resource
footprint. A booming net community has grown up around
the operating system ensuring on-going technical
innovation and wide platform support. Figure shows the
layered architecture of eCos.

Application

Libraries Compatibility

Math C POSIX WITRON Web

Networking File
Stack System

Hardware Abstraction Laver Device Driver
-l - E

— — ~

RedBootR)

oM .
Interrupts| Virtual

I

I

I

|

I

I

I

| Kernel
I

i

I

I

I .
i Exceptions||eherned serial | Flash
I

Monitor Vectars

e o o = = e e = e e e e = e e e e e e e e e e = e

Fig. 3.1. Overview of eCos Architecture.[6]

The main components in eCos architecture are the
Hardware Abstraction Layer (HAL) and eCos Kernel. The
purpose of eCos HAL is to allow the application to be
independent of target hardware. eCos can manipulate the
hardware layer using the HAL API. This HAL is also used
by others upper OS layer which make porting eCos to a
new hardware target a simple task consisting of developing
the HAL of the new target. eCos kernel is the core of eCos
system, it includes the most part of modern operating
system components: scheduling, synchronization,
interrupt, exception handling, counters, clocks, alarms,
It is written in C++ language allowing
application written in this language to interface directly to
the kernel resources. The eCoskernel also has supports to
interface standard library like pITRON and POSIX
compatibility layers. POSIX (Portable Operating System
Interface) threads, usually referred to as Pthreads, are
a POSIX standard for threads. POSIX Threads extensions
(IEEE Std 1003.1c-1995), defines an API (Application
Programming Interface) for creating and manipulating
threads. [6][7]

timers, etc.

V. POSIX THREADS

The Pthreads standard provides not only an uniform base
for multi-core processor shared-memory applications but

IUSPR | 57

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Application_programming_interface

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Issue 100, Volume 35, Number 01, 2017

also a real-time system environments and a cheap model
for multi-threaded programs. The notion of threads can be
used to express parallelism within applications at the level
of programming languages. An implementation oOf
Pthreads can be carried out as:

e A kernel implementation, where all functionality
is part of the operating system kernel;

e A library implementation, where all functionality
is part of the user program and can be linked in;
or

e A mixture of the above.

A kernel implementation simplifies control over
thread operations and signal handling but adds the
overhead of entering and leaving the kernel at each call. A
library implementation can be more efficient since it does
not have to enter the operating system kernel but it
complicates signal handling and some thread operations,
and it also has to deal with two different scheduler, one for
processes (kernel level) and one for threads (library level).

A. Pthreads Standard

The Pthreads standard specifies various servicesthat
can be provided to support multi-threaded
applications.Most of the interface specifications
leavemany details to the implementation. For
example,support for certain functions and the detection
ofsome errors is optional. Therefore, Pthreads
compliantimplementations may vary considerably.pthreads
implementation supports the following functionality:

o thread management. initializing, creating,
joining, exiting and destroying threads;
e synchronization:mutual exclusion, condition

variables;

e thread-specific data;

e thread priority scheduling: priority management,
preemptive priority scheduling;

e signals: signal handlers, asynchronous wait,
masking of signals, long jumps;
o Cancellation: cleanup handlers, different

interruptibility states.

The support is currently being extended to include process
control.

B. Design and Implementation

The design of Pthreads has been stronglyinfluenced by
constraints of the Pthreads standard and to some extend by
the use of eCoson SPARC architecture. The interface
consists of a C library with linkableentry points and can
optionally be compiled togenerate a language-independent
interface. An interface allows programs to use Pthreads

WWW.ijspr.com

ISSN: 2349-4689

services. In case of the programming language C the
library routines of Pthreads are immediately available. Any
other programming language needs a language interface to
the Pthreads library to pass parameters correctly, perform
type conversion and other language or compiler-dependent
adjustments.

The Pthreads library contains a set of routines whose
interface and functionality are defined by the Pthreads
standard. Pthreads routines partially execute asauser mode
and within critical sections it operates in the Pthreads
kernel mode to guarantee mutual exclusion between
multiple threads.

In order to introduce an application on top of a
multiprocessor architecture, the code needs to be
parallelized in several threads. Then the entry of the flow
is a parallel application composed of several concurrent
POSIX threads. A POSIX thread is created by a call to:

intpthread_create (pthread_t *thread, pthread_attr_t *attr,
void *(* start_function) (void *arg), void *arg)

This executes the thread whose behaviour is the
start_function called with arg as argument. The attr
structure contains thread attributes, such as stack size,
stack address and scheduling policies. These attributes are
particularly useful when dealing with embedded systems
or SoCs, in which the memory map is not standardized.
The value returned in the thread pointer iS a unique
identifier for the thread. For more details, we refer the
reader to [8].

The application threads communicate using different
communication primitives. Generally it distinguish two
types of parallel programming models suited to
multiprocessor architectures: shared memory model
likeOpenMP and message passing model like MPI. In our
case study, we used the shared memory model at the
implementation level, under a Symmetric MultiProcessor
(SMP) kernel.

V. SYSTEM IMPLEMENTATION
A. Configuration of Leon3 Processor

The highly configurable nature of LEON3 processor
allows the model to be customized for a certain application
or target technology. A graphical configuration tool based
on the Linux kernel tkconfig scripts is used to configure
the model. Issue the command ‘make xconfig’ in a bash
shell ofthe directory ‘designs/LEON3-altera-de2ep2C35’
will launch the xconfig GUI tool as shown in Figure.

It is used to modify the LEON3 template design. When the
configuration is saved and ‘xconfig’ is exited, that updated

IJSPR | 58

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Issue 100, Volume 35, Number 01, 2017

the config.vhd selected

configuration.

automatically with the

B. Compilation and Synthesis of Leon3 Processor

On Windows systems, the LEON VHDL model and test
bench wascompiled by running in transcript of ‘modelsim’
using the ‘vcom’ and ‘vlog’ compilers. Once the LEON3
model has been compiled, it is simulated by “vsim” to
verify the behavior of the model. The simulationruns a test
bench that stimulates the main components of LEONS.
The simulation is halted by putting integer unit in error
mode. The test program executed by the test bench
consists of two parts, a simple prom boot loader (prom.S)
and the test program itself (systest.c). Both parts can be re-
compiled using the ‘make soft’ command in the bash shell
(LINUX)[10]. This requires that the BCC tool-chain is
installed on the host computer. The simulation is
terminated by generating a VHDL failure. It is the only
way of stopping the simulation from inside the model. An
error message iS then printed and should beignored. The
template design can be tested and synthesized with various
synthesis tools like Xilinx, Quartus, Simplify, Precision or
ISE/XST. After configuration is over the Leonmodel is
synthesized for Altera Cyclone Il using Quartus 1l
software [11].

LEOMIMP GR-PCI-XCSV Design Configuration

Symtesis. | Detuny Link.] Save and Ewit
[| perghers | ot comtgprtion trom o0 |
A contiguratin | \AIDL Detugging | ston contguratin 1 100 |
(= procser _ox[=
Froonaor VHOL Detuggng
#y B Enable LEON) SPARC W Processor Help || # ¥ N Accelersted UART tracing sy
1 Memibeer of processons Help
Ieeger unit ain bras Py
Floating-point unit
Cactw ¥y3tem
Dutug Support Usit
Fowdt-todarance
VHDL detury settings
i i e o
Fig. 5.1. Configuration GUI for Leon3 processor[9]

C. Installation and Configuration of Real Time Operating
System (eCos)

All the required tools to begin developing application
using Leon3 multicore processor is supported by RTOS
such as eCos. The process contains three major steps -
eCosinstallation and configuration phases, theapplication
compilation and their respective execution environment.
The eCos RTOS installation and configuration can be
divided into four steps. In a Linux host to produce Leon3
executable Leon3 cross compiler‘sparc-elf-gcc’ must have
installed bydecompressingit in the “/opt” directory and
installed using “export PATH=/opt/sparc-elf-
3.4.4/bin:3PATH” command in bash shell[12]. Then install
the eCos source code and supporting configuration tools
bydecompressingit in a chosen directory that can be used

WWW.ijspr.com

ISSN: 2349-4689

in the configuration phase. This configuration tools are
available in different versions;here Linux version is used
that does not need additional library. eCos is one of the
most architecture free RTOS. The choices of a specific
target, wide range of hardware platform and software
configurations is done by running the eCos configuration
tool GUI and select the target platform “LEON3
processor”, ‘net package’ and predefined setting that
customized later by selecting specific networking stack,
debugging interface or any other specific software
component[13]. Finally save the configuration file and
starting the building process using build item in the
configuration tool GUI. After building eCos library giving
a simple command will compile the application by
mentioning the location of the eCos library.

D. Multithreaded Matrix Multiplication

For the case study a simple matrix multiplication using
multiple threads using POSIX thread standard is used. The
exact operation iS explained by figure shown below.

Operation of an application is divided into three steps —
Initialization, multiplication and printing results. At first
initialization of wvariable, thread space creation and
populating matrix memory space with random values is
done. Then threads are created in which matrix
multiplication is done.

Main Fragram

HES

Compiited

L H I

Stop

Fig. 5.2. Multithreaded matrix multiplication.

The multiplication is so divided that no overlapping or
double multiplication happens. Above figure illustrate how
matrix multiplication is divided into two parts for each
thread. Returning of these threads to main program
confirms the completion of threads operation. And finally
noted time at the start and end of threads creation and
completion is converted into seconds and displayed.

IJSPR | 59

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (lJSPR)

Issue 100, Volume 35, Number 01, 2017
E. Debugging

GRMON is a debug monitor for the Leon3 DSU and for
SOC designs based on the GRLIB IP library. It provides a
non-intrusive debug environment on real target hardware.
With the help of this tool LEON3 applications was
downloaded and executed [15].

VI. RESULT

Matrix multiplication using multithreading is run on dual
core Leon3 embedded system design on Cyclone Il FPGA
with eCos. The results obtained are shown in tabular form
below.

Table 1 shows the execution time of an application
obtained using matrix of dimension 49x49withdifferent no.
of threads on single as well as dual core embedded
system,while Table 2 shows the execution time of an
application obtained using matrix of dimension 99x99 with
different no. of threads on single as well as dual core
embedded system. Timing shows are in seconds.

TABLE 1. Execution Time For 49x49 Matrix

Multiplication
Matrix Dimension = 49x49
No. Of Cores
No. Of Th
° reads Single Core Dual Core

1 0.13 0.13
2 0.12 0.08
3 0.13 0.09
4 0.12 0.08

TABLE 2. Execution Time For 99x99 Matrix

Multiplication
Matrix Dimension = 99x99
No. Of Cores
No Of Th
° reads Single Core Dual Core

1 111 1.13
2 11 0.63
3 11 0.63
4 1.04 0.6

VII. CONCLUSION

In the project, a multiprocessor system using Leon3 soft
core processors on Altera Cyclone |l FPGA emulation
board was designed and results are obtained. It is
concluded from the results that the execution time to
multiply the matrix, on dual core system is less than single
core system, when multiple threads are used. It is also seen
that when no. of threads exceeds the no. of core in the
system then there is minimal enhancement in the execution
time.

WWW.ijspr.com

ISSN: 2349-4689

VIII. ACKNOWLEDGEMENT

We thank Gaisler Research, for providing us all the
obligatory tools, due to which we were capable to obtain
the quality results.

REFERENCE

[1] NabilLitayem, Bochralaafar, SlimbenSaoud, “Embedded
Microprocessor Performance Evaluation Case Study ofthe
Leon3 processor”, Journal of Engineering Science and
Technology Vol. 7, No. 5 (2012) 574 - 588.

[2] P.Huerta, J.Castillo, J.I.Martinez, V.Lopez, “A MicroBlaze
Based Multiprocessor S0C”,

[3] Jiri Gaisler. The LEON-3 Processor User’s Manual,
Version 1.0.20, February 2009 http://www.gaisler.com,

[4] Gaisler Research, “GRLIB IP Library User’s Manual”,
Version 1.1.0 B4113 January 2012.

[5] GaislerResearch, “GRLIB IP Core User’s Manual”,Version
1.1.0 - B4113, January 2012.

[6] Red Hat Inc., “eCos Reference Manual”, Version 2.0,
September 2000,

[7] Red Hat Inc., “eCos User Guide”, 2003,

[8] Andrew S. Tanenbaum. Distributed Operating Systems,
chapter 6.3, pages 315.333. Prentice Hall, 1995

[9] AecroflexGaisler, LEON/GRLIB Configuration and
Development Guide, December 2012

[10] AeroflexGaisler, LEON3 LEON3-FT CompanionCore
Data Sheet,

[11] Altera Corporation, “Cyclone Il FPGA Starter
Development Kit User Guide”, Version 1.0.0 October
2006.

[12] Jiri Gaisler, “BCC - Bare-C Cross-Compiler User’s
Manual”, Version 1.0.41, July 2012.

[13] Massa, A.J. (2003). Embedded software development with
eCos. Prentice Hall.

[14] Frank vahid,TonyGivargis, “Embeded System Design”,
John Wiley & Sons Inc.,2002 edition.

[15] Gaisler Research, “GRMON User’s Manual”, Version
1.1.52, January 2012.

[16] A. Patel, C. Madill, M. Saldana, C. Comis, R. Pomes, and
P. Chow, “A Scalable FPGA- based Multiprocessor”, in
14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 24-26 April 2006, pp.111-
120.

[17] John Fruehe, “ Planning Considerations for Multi core
Processor Technology”, Dell Power solutions, May 2005,

[18] BenaoumeurSenouci, AimenBouchhima, Frédéric
Rousseau, FrédéricPetrot, Ahmed Jerraya, “Fast
Prototyping of POSIX based applications on a
Multiprocessor SOC Architecture: “Hardware-dependent
Software oriented approach™, Seventeenth IEEE
International Workshop on Rapid System Prototyping 14-
16 June 2006, pp. 69-75,

[19] Frank Mueller, “A Library Implementation of POSIX
Threads under UNIX” 1993 Winter USENIX — January 25-
29, 1993 - San Diego, CA,

IJSPR | 60

	Configuration of Lеon3 Procеssor
	Compilation and Synthеsis of Lеon3 Procеssor
	Installation and Configuration of Rеal Timе Opеrating Systеm (eCos)
	Multithreadеd Matrix Multiplication
	Dеbugging

