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Abstract - With the ongoing digital revolution and advances in 
high performance computing, powerful desktop computer 
systems are available to almost everybody at low cost. While 
there has always been a demand for hardware implementations 
of public key cryptography, the volume has risen dramatically 
in recent years, due to a paradigm. Because of its complexity, 
public–key cryptography is mainly used for digital signatures 
and the management of secret keys between two points. The 
encryption of bulk data is mainly established with secret–key 
cryptosystems, whereas the secret keys to be shared for a pair of 
users are distributed by public–key cryptosystems. Increasing 
demand for modular multiplication requires fast modular 
multiplication algorithms such as Montgomery multiplication 
the implementation, verification and testing of a Montgomery 
modular multiplication algorithm for the new efficient area and 
delay profile architecture of asynchronous parallel self timed 
adder based Montgomery multiplication reported in this work. 
This architecture proposes improvements on the well–known 
Montgomery multiplication algorithm and its previous 
implementations. The implementation and synthesis of 
proposed work has completed on Xilinx ISE design suite using 
hardware descriptive language HDL. The performance of 
proposed architecture has been evaluated based on area and 
delay profile. 
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I. INTRODUCTION 

To perform the complicated application like Public Key 
Cryptographic (PKC) algorithms, such as RSA, Diffie-
Hellman, and Elliptic Curve Cryptography, requires 
modular multiplication of very large operands (sizes from 
160 to 4096 bits) as their core arithmetic operation 
operation reasonably fast, general purpose processors are 
not always the best choice. This is why specialized 
hardware, e.g. in the form of cryptographic co-processors, 
become more attractive. 

Based upon the analysis of recent works on the hardware 
design for modular multiplication, this work presents a 
new architecture efficient area and delay profile 
architecture of asynchronous parallel self timed adder. To 
our knowledge this is the algorithm for Montgomery’s 

method is realized using asynchronous parallel self timed 
adder that can perform two different types of arithmetic. 

Montgomery proposed an algorithm for modular 
multiplication. This new algorithm, called Montgomery 
Multiplication Algorithm, has the advantage of replacing 
division operations by bit shift operations. If the least 
significant bits to be shifted out are not zero, 
Montgomery’s algorithm adds multiples of modulus to 
clear these bits before shifting them out. 

In regular modular multiplication, after all bits of the 
multiplicand are processed, modulus is repeatedly 
subtracted from the result unless the result is less than the 
modulus. In Montgomery multiplication, bits are shifted 
out as each bit of the multiplicand is processed, leaving no 
need for the subtractions. 

The flexibility of architecture to work with different types 
of arithmetic is a key feature for modern information 
security applications. A wealth of competing crypto- 
graphic algorithms exists and has been standardized. 
Supporting a broad range of these algorithms is no longer 
optional, but a necessity. The most promising model of 
addressing this issue in the design of a cryptographic co-
processor is to add efficient arithmetic and logic primitives 
to a standard microprocessor / -controller architecture. 
This ensures an upgrade path to support future algorithms 
and changes to existing schemes, while preserving the 
speed advantages of a specialized design. 

Unified Architecture: Architecture is said to be unified 
when it is able to work with operands in both prime and 
binary extension fields using the same hardware. It has 
been shown that a unified multiplier is feasible with only 
minor modifications to the multiplier for GF(p). 

Dual–Radix Architecture: A unified multiplier is said to be 
dual–radix if it operates with a larger radix value for 
GF(2n) than the radix used for GF(p). The term, 
architecture, is used to represent the hardware of the 
Montgomery multiplier. 
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Dual radix multiplier design has critical time–area 
considerations, as the cost of extra radix should not effect 
the signal propagation time much while keeping the silicon 
area as low as possible. 

II. SYSTEM MODEL 

The fundamentals of asynchronous systems such as 
handshake protocols, bundled-data and delay-insensitive 
data encoding schemes, modes of operation, various 
classes of asynchronous circuits based on the timing 
models adopted, Muller's C-element and the concept of 
indication, and the notion of a function block are discussed 
briefly. 

a. Handshake Mechanism 

Asynchronous systems come in many flavours with the 
most prominent among them being bundled-data and dual-
rail data encoding schemes. The communication protocol 
among these systems can also assume two forms: 2-phase 
(transition signalling) and 4-phase (level- sensitive 
signalling). Bundled-data encoding with 2-phase signalling 
and dual-rail data encoding with 4-phase signalling have 
been the popular choices in asynchronous circuit design 
until now and so they will be described here to provide 
relevant background information. In fact, dual-rail data 
encoding with level sensitive signalling continues to attract 
attention, as it    is tolerant to variations in logic elements 
and communicating signal wires and hence has become 
attractive for deep submicron technologies. 

 

Figure 2.1 Bundled- data encoding and 2- phase 
handshaking. 

b. Bounded and Unbounded Delay Models 

Asynchronous circuit design methodologies can generally 
be categorised based on the timing models. Bounded delay 
models assume that the delay in all circuit elements  and  
wires  is known (thereby bounded). Circuits based on this 
model, coupled with the fundamental mode assumption, 
are generally referred to as Huffman circuits. There are 
two basic assumptions underlying this model: i) only one 
input to the circuit is allowed to change at a time, and ii) 
the present-state entries of the combinational logic can 
change only after the logic has settled in response to a new 

input – this condition, when    viewed along with the first 
constraint leads to the understanding that multiple input 
changes would necessitate multiple iterations by the non-
regenerative logic thereby increasing the number of cycles 
required to complete computation. 

 

Figure 2.2 Fundamental mode system configuration. 

c. C-element and Indicatability 

The C-element, introduced by Muller, is an important gate 
widely used in asynchronous circuits and is the key 
element for implementing robust  asynchronous  logic.  
The symbol, Boolean equation and a transistor level 
realisation of the 2-input C-element (CE2) with weak 
feedback are shown in the figure  below. 

 

Figure 2.3 input C-element. 

The CE2 outputs a 'high', when both its inputs are 'high' 
and outputs a 'low', when both its inputs become 'low'. In 
general, a random size C-element waits for all its inputs to 
become high (low) before producing a similar logic level 
at its output. 

d. PASTA 

The classical design of PASTA has been shown in figure. 
The input selection for two input multiplexers corresponds 
to the Request handshake signal and will be a single 0 to 1 
transition denoted by SEL. It will initially select the actual 
operands during SEL=0and will switch to feedback/carry 
paths for subsequent iterations using SEL=1. The feedback 
path from the HAs enables the multiple iterations to 
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continue until the completion when all carry signals will assume zero values. 

 

Figure 2.4 Basic block diagram of PASTA. 

III. PROPOSED SYSTEM 

The simplest way of adapting Montgomery’s algorithm to 
large operand sizes would hence be, to just replace every 
arithmetic operation by its multi-precision equivalent. The 
criteria for selecting the most suitable algorithm are not 
limited to the number of multiplication operations alone. 
The specific architecture targeted for the implementation 
also plays an important role. Asynchronous parallel self 
timed adder based method is the most suitable one for 
implementation of modular multiplication.  An area and 
delay efficient system has been proposed in this work 
implemented on Xilinx ISE design suite. RTL schematic of 
top module of proposed work has been shown in figure 
3.1. To implement proposed system an efficient 
asynchronous parallel adder has been utilized to design a 
modular multiplication algorithm. As shown in figure there 
are two input pints in proposed design A (63:0) and B 
(63:0) are the 64 bit input vectors. M (63:0) is the 64 bit 
modular multiplier, clk is a clock input. Product (63:0) is 
the 64 bit product output. The proposed architecture is 
very useful in complex cryptographic application.  

Sub module of proposed module has been shown in Figure 
3.2 RTL schematic of sub modules of proposed 
architecture. RTL schematic of expanded view of sub 
module has been shown in figure 3.3. Primitive arithmetic 
operations such as multiplication and addition are limited 
to a certain word size w. Operands of cryptographic 
algorithms, on the other hand, tend to be very large, so that 
multiple precision arithmetic comes into existence. The 
common trade-off when it comes to implementation of an 
algorithm in hardware versus one in software is that 
flexibility is sacrificed for speed. There are a number of 
different ways to improve on the performance of complex 
operations in hardware.  While logic and arithmetic 
operations take at least one clock cycle each in software 
implementations, multiple logic operations can be 
combined into a single clock cycle in custom built 
hardware. 

 

Figure 3.1 RTL Schematic of Top Module of Proposed 
Architecture 

 

Figure 3.2 RTL Schematic of Sub Modules of Proposed 
Architecture 
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Figure 3.3 RTL Schematic of Expanded View of Sub 
Modules of Proposed Architecture 

SYNTHESIS OUTCOMES 

Synthesis of proposed work has been done on Xilinx ISE 
simulated on ISIM HDL simulation environment. The 
components of the design were described the in structural 
VHDL code. This approach makes the performance of the 
design less dependent on the synthesis features of the 
VHDL compiler suite. The correct function of the 
components has been verified using a VHDL testbench. A 
testbench essentially is a piece of behavioral VHDL code 
without any signals to the outside, that instantiates the 
component that  is to be tested, also called Device Under 
Test (DUT), feeds specific data to its inputs (test vectors or 
patterns) and reads back the results, comparing them to the 
expected results. Figure 4.1 synthesis screen of proposed 
work on Xilinx ISE 13.1. 

The timing summary of proposed design has been shown 
in Figure 4.2 device utilization statistics and timing 
summary of proposed architecture achieved Clock period: 
5.867ns (frequency: 170.457MHz). Table 1 shows the 
Implementation results comparison with the previous 
architecture. 

 

Figure 4.1 Device Utilization Summary of the Implementation on XILINX UI. 
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Figure 4.2 Device Utilization Statistics and Timing Summary of Proposed Architecture. 

Table 1: Implementation Results Comparison with the 
Previous Architecture 

Parameters Previous 
Architecture 

Proposed 
Architecture 

(PASTA) 
Transform 
length / Number 
of digits (P) 

64 64 

Bit length of 
each digit (u) 32 32 

LUTs 13975 789 
Slices 3928 150 
Period 5.34 ns 5.86 ns 
Latency / Delay 5.67 us (5670 ns) 17.406 ns 

 

 

Figure 4.3 Graphical comparison of proposed work with 
existing work in terms of LUTs 

 

Figure 4.4 Graphical comparison of proposed work with 
existing work in terms of Slices. 

IV. CONCLUSION AND FUTURE SCOPES 

A new architecture for efficient area and delay profile 
architecture of asynchronous parallel self timed adder 
based Montgomery multiplication algorithm has been 
proposed, which combines positive features from 
previously proposed architectures with recent advances in 
digit multiplier design. The outcome of proposed work has 
highly scalable design with the ability to perform integer 
and binary arithmetic multiplication operation at high 
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Device utilization summary: 
--------------------------- 
 
Selected Device : 6vlx130tff484-3  
 
 
Slice Logic Utilization:  
 Number of Slice Registers:             150  out of  160000     0%   
 Number of Slice LUTs:                  789  out of  80000     0%   
    Number used as Logic:               789  out of  80000     0%   
 
Slice Logic Distribution:  
 Number of LUT Flip Flop pairs used:    795 
   Number with an unused Flip Flop:     645  out of    795    81%   
   Number with an unused LUT:             6  out of    795     0%   
   Number of fully used LUT-FF pairs:   144  out of    795    18%   
   Number of unique control sets:         4 
 
IO Utilization:  
 Number of IOs:                         259 
 Number of bonded IOBs:                 259  out of    240   107%  
==================================================================== 
 
Timing Details: 
--------------- 
All values displayed in nanoseconds (ns) 
==================================================================== 
Timing constraint: Default period analysis for Clock 'clk' 
  Clock period: 5.867ns (frequency: 170.457MHz) 
  Total number of paths / destination ports: 14375 / 214 
------------------------------------------------------------------- 
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speeds. Analysis and comparison of previous work results 
with proposed work results proved the efficiency and 
advances of proposed work. The most important outcome 
of this analysis was to identify delay and area utilized to 
implement and synthesize design. In this work the 
architecture has been implemented in VHDL, synthesized 
and tested successfully. 

The architecture presented in this work can be considered 
for future work to improve    performance in terms of high 
seeped and less area. In the current/future era where issues 
such as reliability and variability tend to assume greater 
significance than quality-of-results. The mathematical 
proof of the control logic for these architectures can be an 
interesting area of study. 

 

Figure 4.5 Delay comparisons. 
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