
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 89

Efficient Area and Delay Profile Architecture of
Asynchronous Parallel Self Timed Adder Based

Montgomery Multiplication
Vijeta Raichur1, Prof. Laxminarayan Gahalod2

1M. Tech. Scholar, 2Guide

Department of Electronics and Communication Engineering, LNCT, Bhopal

Abstract - With the ongoing digital revolution and advances in
high performance computing, powerful desktop computer
systems are available to almost everybody at low cost. While
there has always been a demand for hardware implementations
of public key cryptography, the volume has risen dramatically
in recent years, due to a paradigm. Because of its complexity,
public–key cryptography is mainly used for digital signatures
and the management of secret keys between two points. The
encryption of bulk data is mainly established with secret–key
cryptosystems, whereas the secret keys to be shared for a pair of
users are distributed by public–key cryptosystems. Increasing
demand for modular multiplication requires fast modular
multiplication algorithms such as Montgomery multiplication
the implementation, verification and testing of a Montgomery
modular multiplication algorithm for the new efficient area and
delay profile architecture of asynchronous parallel self timed
adder based Montgomery multiplication reported in this work.
This architecture proposes improvements on the well–known
Montgomery multiplication algorithm and its previous
implementations. The implementation and synthesis of
proposed work has completed on Xilinx ISE design suite using
hardware descriptive language HDL. The performance of
proposed architecture has been evaluated based on area and
delay profile.

Keywords- Asynchronous circuit, Parallel self timed adder,
Montgomery Multiplication, delay profile, cryptosystems. FFT

I. INTRODUCTION

To perform the complicated application like Public Key
Cryptographic (PKC) algorithms, such as RSA, Diffie-
Hellman, and Elliptic Curve Cryptography, requires
modular multiplication of very large operands (sizes from
160 to 4096 bits) as their core arithmetic operation
operation reasonably fast, general purpose processors are
not always the best choice. This is why specialized
hardware, e.g. in the form of cryptographic co-processors,
become more attractive.

Based upon the analysis of recent works on the hardware
design for modular multiplication, this work presents a
new architecture efficient area and delay profile
architecture of asynchronous parallel self timed adder. To
our knowledge this is the algorithm for Montgomery’s

method is realized using asynchronous parallel self timed
adder that can perform two different types of arithmetic.

Montgomery proposed an algorithm for modular
multiplication. This new algorithm, called Montgomery
Multiplication Algorithm, has the advantage of replacing
division operations by bit shift operations. If the least
significant bits to be shifted out are not zero,
Montgomery’s algorithm adds multiples of modulus to
clear these bits before shifting them out.

In regular modular multiplication, after all bits of the
multiplicand are processed, modulus is repeatedly
subtracted from the result unless the result is less than the
modulus. In Montgomery multiplication, bits are shifted
out as each bit of the multiplicand is processed, leaving no
need for the subtractions.

The flexibility of architecture to work with different types
of arithmetic is a key feature for modern information
security applications. A wealth of competing crypto-
graphic algorithms exists and has been standardized.
Supporting a broad range of these algorithms is no longer
optional, but a necessity. The most promising model of
addressing this issue in the design of a cryptographic co-
processor is to add efficient arithmetic and logic primitives
to a standard microprocessor / -controller architecture.
This ensures an upgrade path to support future algorithms
and changes to existing schemes, while preserving the
speed advantages of a specialized design.

Unified Architecture: Architecture is said to be unified
when it is able to work with operands in both prime and
binary extension fields using the same hardware. It has
been shown that a unified multiplier is feasible with only
minor modifications to the multiplier for GF(p).

Dual–Radix Architecture: A unified multiplier is said to be
dual–radix if it operates with a larger radix value for
GF(2n) than the radix used for GF(p). The term,
architecture, is used to represent the hardware of the
Montgomery multiplier.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 90

Dual radix multiplier design has critical time–area
considerations, as the cost of extra radix should not effect
the signal propagation time much while keeping the silicon
area as low as possible.

II. SYSTEM MODEL

The fundamentals of asynchronous systems such as
handshake protocols, bundled-data and delay-insensitive
data encoding schemes, modes of operation, various
classes of asynchronous circuits based on the timing
models adopted, Muller's C-element and the concept of
indication, and the notion of a function block are discussed
briefly.

a. Handshake Mechanism

Asynchronous systems come in many flavours with the
most prominent among them being bundled-data and dual-
rail data encoding schemes. The communication protocol
among these systems can also assume two forms: 2-phase
(transition signalling) and 4-phase (level- sensitive
signalling). Bundled-data encoding with 2-phase signalling
and dual-rail data encoding with 4-phase signalling have
been the popular choices in asynchronous circuit design
until now and so they will be described here to provide
relevant background information. In fact, dual-rail data
encoding with level sensitive signalling continues to attract
attention, as it is tolerant to variations in logic elements
and communicating signal wires and hence has become
attractive for deep submicron technologies.

Figure 2.1 Bundled- data encoding and 2- phase
handshaking.

b. Bounded and Unbounded Delay Models

Asynchronous circuit design methodologies can generally
be categorised based on the timing models. Bounded delay
models assume that the delay in all circuit elements and
wires is known (thereby bounded). Circuits based on this
model, coupled with the fundamental mode assumption,
are generally referred to as Huffman circuits. There are
two basic assumptions underlying this model: i) only one
input to the circuit is allowed to change at a time, and ii)
the present-state entries of the combinational logic can
change only after the logic has settled in response to a new

input – this condition, when viewed along with the first
constraint leads to the understanding that multiple input
changes would necessitate multiple iterations by the non-
regenerative logic thereby increasing the number of cycles
required to complete computation.

Figure 2.2 Fundamental mode system configuration.

c. C-element and Indicatability

The C-element, introduced by Muller, is an important gate
widely used in asynchronous circuits and is the key
element for implementing robust asynchronous logic.
The symbol, Boolean equation and a transistor level
realisation of the 2-input C-element (CE2) with weak
feedback are shown in the figure below.

Figure 2.3 input C-element.

The CE2 outputs a 'high', when both its inputs are 'high'
and outputs a 'low', when both its inputs become 'low'. In
general, a random size C-element waits for all its inputs to
become high (low) before producing a similar logic level
at its output.

d. PASTA

The classical design of PASTA has been shown in figure.
The input selection for two input multiplexers corresponds
to the Request handshake signal and will be a single 0 to 1
transition denoted by SEL. It will initially select the actual
operands during SEL=0and will switch to feedback/carry
paths for subsequent iterations using SEL=1. The feedback
path from the HAs enables the multiple iterations to

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 91

continue until the completion when all carry signals will assume zero values.

Figure 2.4 Basic block diagram of PASTA.

III. PROPOSED SYSTEM

The simplest way of adapting Montgomery’s algorithm to
large operand sizes would hence be, to just replace every
arithmetic operation by its multi-precision equivalent. The
criteria for selecting the most suitable algorithm are not
limited to the number of multiplication operations alone.
The specific architecture targeted for the implementation
also plays an important role. Asynchronous parallel self
timed adder based method is the most suitable one for
implementation of modular multiplication. An area and
delay efficient system has been proposed in this work
implemented on Xilinx ISE design suite. RTL schematic of
top module of proposed work has been shown in figure
3.1. To implement proposed system an efficient
asynchronous parallel adder has been utilized to design a
modular multiplication algorithm. As shown in figure there
are two input pints in proposed design A (63:0) and B
(63:0) are the 64 bit input vectors. M (63:0) is the 64 bit
modular multiplier, clk is a clock input. Product (63:0) is
the 64 bit product output. The proposed architecture is
very useful in complex cryptographic application.

Sub module of proposed module has been shown in Figure
3.2 RTL schematic of sub modules of proposed
architecture. RTL schematic of expanded view of sub
module has been shown in figure 3.3. Primitive arithmetic
operations such as multiplication and addition are limited
to a certain word size w. Operands of cryptographic
algorithms, on the other hand, tend to be very large, so that
multiple precision arithmetic comes into existence. The
common trade-off when it comes to implementation of an
algorithm in hardware versus one in software is that
flexibility is sacrificed for speed. There are a number of
different ways to improve on the performance of complex
operations in hardware. While logic and arithmetic
operations take at least one clock cycle each in software
implementations, multiple logic operations can be
combined into a single clock cycle in custom built
hardware.

Figure 3.1 RTL Schematic of Top Module of Proposed
Architecture

Figure 3.2 RTL Schematic of Sub Modules of Proposed
Architecture

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 92

Figure 3.3 RTL Schematic of Expanded View of Sub
Modules of Proposed Architecture

SYNTHESIS OUTCOMES

Synthesis of proposed work has been done on Xilinx ISE
simulated on ISIM HDL simulation environment. The
components of the design were described the in structural
VHDL code. This approach makes the performance of the
design less dependent on the synthesis features of the
VHDL compiler suite. The correct function of the
components has been verified using a VHDL testbench. A
testbench essentially is a piece of behavioral VHDL code
without any signals to the outside, that instantiates the
component that is to be tested, also called Device Under
Test (DUT), feeds specific data to its inputs (test vectors or
patterns) and reads back the results, comparing them to the
expected results. Figure 4.1 synthesis screen of proposed
work on Xilinx ISE 13.1.

The timing summary of proposed design has been shown
in Figure 4.2 device utilization statistics and timing
summary of proposed architecture achieved Clock period:
5.867ns (frequency: 170.457MHz). Table 1 shows the
Implementation results comparison with the previous
architecture.

Figure 4.1 Device Utilization Summary of the Implementation on XILINX UI.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 93

Figure 4.2 Device Utilization Statistics and Timing Summary of Proposed Architecture.

Table 1: Implementation Results Comparison with the
Previous Architecture

Parameters Previous
Architecture

Proposed
Architecture

(PASTA)
Transform
length / Number
of digits (P)

64 64

Bit length of
each digit (u) 32 32

LUTs 13975 789
Slices 3928 150
Period 5.34 ns 5.86 ns
Latency / Delay 5.67 us (5670 ns) 17.406 ns

Figure 4.3 Graphical comparison of proposed work with
existing work in terms of LUTs

Figure 4.4 Graphical comparison of proposed work with
existing work in terms of Slices.

IV. CONCLUSION AND FUTURE SCOPES

A new architecture for efficient area and delay profile
architecture of asynchronous parallel self timed adder
based Montgomery multiplication algorithm has been
proposed, which combines positive features from
previously proposed architectures with recent advances in
digit multiplier design. The outcome of proposed work has
highly scalable design with the ability to perform integer
and binary arithmetic multiplication operation at high

0
2000
4000
6000
8000

10000
12000
14000

Previous
Architecture

Proposed
Architecture

(PASTA)

LUTs
LUTs

0
500

1000
1500
2000
2500
3000
3500
4000

Previous
Architecture

Proposed
Architecture

(PASTA)

Slices
Slices

Device utilization summary:

Selected Device : 6vlx130tff484-3

Slice Logic Utilization:
 Number of Slice Registers: 150 out of 160000 0%
 Number of Slice LUTs: 789 out of 80000 0%
 Number used as Logic: 789 out of 80000 0%

Slice Logic Distribution:
 Number of LUT Flip Flop pairs used: 795
 Number with an unused Flip Flop: 645 out of 795 81%
 Number with an unused LUT: 6 out of 795 0%
 Number of fully used LUT-FF pairs: 144 out of 795 18%
 Number of unique control sets: 4

IO Utilization:
 Number of IOs: 259
 Number of bonded IOBs: 259 out of 240 107%
==

Timing Details:

All values displayed in nanoseconds (ns)
==
Timing constraint: Default period analysis for Clock 'clk'
 Clock period: 5.867ns (frequency: 170.457MHz)
 Total number of paths / destination ports: 14375 / 214

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 94

speeds. Analysis and comparison of previous work results
with proposed work results proved the efficiency and
advances of proposed work. The most important outcome
of this analysis was to identify delay and area utilized to
implement and synthesize design. In this work the
architecture has been implemented in VHDL, synthesized
and tested successfully.

The architecture presented in this work can be considered
for future work to improve performance in terms of high
seeped and less area. In the current/future era where issues
such as reliability and variability tend to assume greater
significance than quality-of-results. The mathematical
proof of the control logic for these architectures can be an
interesting area of study.

Figure 4.5 Delay comparisons.

REFERENCES

[1] S. Kavyashree and B. V. Uma, "Design and implementation
of different architectures of montgomery modular
multiplication," 2017 2nd IEEE International Conference on
Recent Trends in Electronics, Information &
Communication Technology (RTEICT), Bangalore, 2017,
pp. 1101-1105.

[2] P. M. C. Massolino, L. Batina, R. Chaves and N. Mentens,
"Area-optimized montgomery multiplication on IGLOO 2
FPGAs," 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), Ghent, 2017,
pp. 1-4.

[3] Leelavathi G, Shaila K and Venugopal K R, "Elliptic Curve
Cryptography implementation on FPGA using Montgomery
multiplication for equal key and data size over GF(2m) for
Wireless Sensor Networks," 2016 IEEE Region 10
Conference (TENCON), Singapore, 2016, pp. 468-471.

[4] S. R. Kuang, K. Y. Wu and R. Y. Lu, "Low-Cost High-
Performance VLSI Architecture for Montgomery Modular
Multiplication," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 2, pp. 434-443

[5] J. C. Néto, A. F. Tenca and W. V. Ruggiero, "CRT RSA
decryption: Modular exponentiation based solely on
Montgomery Multiplication," 2015 49th Asilomar
Conference on Signals, Systems and Computers, Pacific
Grove, CA, 2015, pp. 431-436

[6] W. Dai, H. Wu and R. C. C. Cheung, "Time-efficient
computation of digit serial Montgomery multiplication,"

2014 International Symposium on Integrated Circuits
(ISIC), Singapore, 2014, pp. 212-215

[7] M. Mohammadi and A. S. Molahosseini, "Efficient design
of Elliptic Curve Point Multiplication based on fast
Montgomery modular multiplication," ICCKE 2013,
Mashhad, 2013, pp. 424-429.

[8] J. Han, S. Wang, W. Huang, Z. Yu and X. Zeng,
"Parallelization of Radix-2 Montgomery Multiplication on
Multicore Platform," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2325-
2330.

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[10] R. L. Rivest, “A description of a single-chip implementation
of the RSA cipher,” Lambda, vol. 1, no. Oct.–Dec., pp. 14–
18, 1980.

[11] P. L. Montgomery, “Modular multiplication without trial
divi- sion,” Mathematics Comput., vol. 44, no. 170, pp.
519–521, 1985.

[12] A. Karatsuba and Y. Ofman, “Multiplication of multidigit
num- bers on automata,” Soviet Physics Doklady, vol. 7,
1963, Art. no. 595.

[13] S. A. Cook and S. O. Aanderaa, “On the minimum
computation time of functions,” Trans. Amer. Math. Soc.,
vol. 142, pp. 291–314, 1969.

[14] A. Scho€nhageand V. Strassen, “Schnelle multiplikation
Großer Zahlen,” Computing, vol. 7, no. 3/4, pp. 281–292,
1971.

0

1000

2000

3000

4000

5000

6000

Previous Architecture Proposed Architecture (PASTA)

Period

Latency / Delay

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689
Issue 144, Volume 48, Number 02, June 2018

www.ijspr.com IJSPR | 95

[15] M. Fu€rer, “Faster integer multiplication,” SIAM J.
Comput., vol. 39, no. 3, pp. 979–1005, 2009.

[16] D. Harvey, J. van der Hoeven, and G. Lecerf, “Even faster
integer multiplication,” CoRR, vol. abs/1407.3360, 2014.
[Online]. Available: http://arxiv.org/abs/1407.3360

