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Abstract: - Independent component analysis (ICA) is a statistical 
method for transforming an observed multidimensional random 
vector into components that are statistically as independent 
from each other as possible. In this paper, we use a combination 
of two different approaches for linear ICA: Comon’s 
information-theoretic approach and the projection pursuit 
approach. Using maximum entropy approximations of 
differential entropy, we introduce a family of new contrast 
(objective) functions for ICA. These contrast functions enable 
both the estimation of the whole decomposition by minimizing 
mutual information, and estimation of individual independent 
components as projection pursuit directions. The statistical 
properties of the estimators based on such contrast functions are 
analyzed under the assumption of the linear mixture model, and 
it is shown how to choose contrast functions that are robust 
and/or of minimum variance. Finally, we intro- duce simple 
fixed-point algorithms for practical optimization of the contrast 
functions. These algorithms optimize the contrast functions very 
fast and reliably. 

I. INTRODUCTION 

A central problem in neural network research, as well as in 
statistics and signal processing, is finding a suitable 
representation or transformation of the data. For 
computational and conceptual simplicity, the representation 
is often sought as a linear transformation of the original data. 
Let us denote by x = (x1, x2... xm)T a zero-mean m-
dimensional random variable that can be observed, and by s 
= (s1, s2, ..., sn)T its n-dimensional transform.  Then the 
problem is to determine a constant (weight) matrix W so 
that the linear transformation of the observed variables has 
some suitable properties. Several principles and methods 
have been developed to find such a linear representation, 
including principal component analysis [1], factor analysis 
[2, 3], projection pursuit [4], independent component 
analysis [5], etc. 

                                    s = Wx                                       (1) 

The transformation may be defined using such criteria as 
optimal dimension reduction, statistical ’interestingness’ of 
the resulting components si, simplicity of the 
transformation, or other criteria, including application-
oriented ones. We treat in this paper the problem of 
estimating the transformation given by (linear) independent 

component analysis (ICA) [7]. As the name implies, the 
basic goal in determining the transformation is to find a 
representation in which the transformed components si are 
statistically as independent from each other as possible. 
Thus this method is a special case of redundancy reduction 
[2]. 

Two promising applications of ICA are blind source 
separation and feature extraction. In blind source 
separation [8], the observed values of x correspond to a 
realization of an m-dimensional discrete-time signal x(t), t= 
1, 2, Then the components si(t) are called source signals, 
which are usually original, uncorrupted signals or noise 
sources. Often such sources are statistically independent 
from each other, and thus the signals can be recovered from 
linear mixtures xi by finding a transformation in which the 
transformed signals are as independent as possible, as in 
ICA. In feature extraction [9], si is the coefficient of the i-
th feature in the observed data vector x. The use of ICA for 
feature extraction is motivated by results in neurosciences 
that suggest that the similar principle of redundancy 
reduction [10] explains some aspects of the early 
processing of sensory data by the brain. ICA has also 
applications in exploratory data analysis in the same way 
as the closely related method of projection pursuit [16, 12]. 

II. CONTRAST FUNCTIONS FOR ICA 

ICA data model, minimization of mutual information, and 
projection pursuit 

One popular way of formulating the ICA problem is to 
consider the estimation of the following generative model 
for the data [1, 3, 5, 6]: 

                                           x = As                              (2) 

Where x is an observed m-dimensional vector, s is an n-
dimensional (latent) random vector whose components are 
assumed mutually independent, and A is a constant m × n 
matrix to be estimated. It is usually further assumed that 
the dimensions of x and s are equal, i.e., m = n; we make this 
assumption in the rest of the paper. A noise vector may also 
be present.  The matrix W defining the transformation as 
in (1) is then obtained as the (pseudo)inverse of the 
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estimate of the matrix A. Non-Gaussianity of the 
independent components is necessary for the identifiability 
of the model (2), see [7]. 

Comon [7] showed how to obtain a more general 
formulation for ICA that does not need to assume an 
underlying data model. This definition is based on the 
concept of mutual information. First, we define the 
differential entropy H of a random vector y = (y1... yn)T 
with density f (.) as follows [8]: 

                                     (3) 

Differential entropy can be normalized to give rise to the 
definition of negentropy, which has the appealing property 
of being invariant for linear transformations. The 
definition of negentropy J is given by 

                                          (4) 

Where ygauss is a Gaussian random vector of the same 
covariance matrix as y. Negentropy can also be interpreted 
as a measure of non gaussianity [7]. Using the concept of 
differential entropy, one can define the mutual information 
I between the n (scalar) random variables yi, i = 1...n [8, 7]. 
Mutual information is a natural measure of the dependence 
between random variables. It is particularly interesting to 
express mutual information using negentropy, constraining 
the variables to be uncorrelated. In this case, we have [7] 

                               (5) 

Since mutual information is the information-theoretic 
measure of the independence of random variables, it is 
natural to use it as the criterion for finding the ICA 
transform. Thus we define in this paper, following [7], the 
ICA of a random vector x as an invertible transformation s 
= Wx as in (1) where the matrix W is determined so that 
the mutual information of the transformed components si is 
minimized. Note that mutual information (or the 
independence of the components) is not affected by 
multiplication of the components by 

scalar constants. Therefore, this definition only defines the 
independent components up to some multiplicative 
constants. Moreover, the constraint of uncorrelated ness of 
the si is adopted in this paper. This constraint is not strictly 
necessary, but simplifies the computations considerably. 

Because negentropy is invariant for invertible linear 
transformations [7], it is now obvious from (5) that finding 
an invertible transformation W that minimizes the mutual 
information is roughly equivalent to finding directions in 
which the negentropy is maximized. This formulation of 
ICA also shows explicitly the connection between ICA 
and projection pursuit [11, 12, 16]. In fact, finding a single 
direction that maximizes negentropy is a form of projection 
pursuit, and could also be interpreted as estimation of a 
single independent component [2]. 

Contrast Functions through Approximations of 
Negentropy 

To use the definition of ICA given above, a simple 
estimate of the negentropy (or of differential entropy) is 
needed. We use here the new approximations developed in 
[19], based on the maximum entropy principle. In [19] it 
was shown that these approximations are often 
considerably more accurate than the conventional, 
cumulate based approximations in [7, 1]. In the simplest 
case, these new approximations are of the form: 

                                (6) 

Where G is practically any non-quadratic function, c is an 
irrelevant constant, and  is a Gaussian variable of zero 
mean and unit variance (i.e., standardized). The random 
variable yi is assumed to be of zero mean and unit 
variance. For symmetric variables, this is a generalization 
of the cumulate based approximation in [7], which is 

obtained by taking G(yi) = y4. 

III. FIXED POINT ALGORITHM FOR ICA 

In the preceding sections, we introduced new contrast (or 
objective) functions for ICA based on minimization of 
mutual information (and projection pursuit), analyzed some 
of their properties, and gave guidelines for the practical 
choice of the function G used in the contrast functions. In 
practice, one also needs an algorithm for maximizing the 
contrast functions in (7) or (8). 

The advantage of neural on-line learning rules is that the 
inputs x(t) can be used in the algorithm at once, thus 
enabling faster adaptation in a non-stationary environment. 
A resulting trade-off, however, is that the convergence is 
slow, and depends on a good choice of the learning rate 
sequence, i.e. the step size at each iteration. A bad choice 
of the learning rate can, in practice, destroy convergence. 
Therefore, it would important in practice to make the 
learning faster and more reliable. This can be achieved by 
the fixed-point iteration algorithms that we introduce here. 
In the fixed-point algorithms, the computations are made 
in batch (or block) mode, i.e., a large number of data 
points are used in a single step of the algorithm.  In other 
respects, however, the algorithms may be considered neural. 
In particular, they are parallel, distributed, computationally 
simple, and require little memory space. We will show 
below that the fixed-point algorithms have very appealing 
convergence properties, making them a very interesting 
alternative to adaptive learning rules in environments 
where fast real-time adaptation is not necessary. 

 

Properties of the Fixed-Point Algorithm 

The fixed-point algorithm and the underlying contrast 
functions have a number of desirable properties when 
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compared with existing methods for ICA. 

• The convergence is cubic (or at least quadratic), 
under the assumption of the ICA data model (for a 
proof, see the convergence proof in the Appendix). 
This is in contrast to gradient descent methods, 
where the convergence is only linear. This means a 
very fast convergence, as has been confirmed by 
simulations and experiments on real data. 

• Contrary to gradient-based algorithms, there are no 
step size parameters to choose (in the original fixed-
point algorithm). This means that the algorithm is 
easy to use. Even in the stabilized version, 
reasonable values for the step size parameter are 
very easy to choose. 

• The algorithm finds directly independent 
components of (practically) any non-Gaussian 
distribution using any nonlinearity g. This is in 
contrast to many algorithms, where some estimate of 
the probability distribution function has to be first 
available, and the nonlinearity must be chosen 
accordingly. 

• The performance of the method can be optimized 
by choosing a suitable nonlinearity g. In particular, 
one can obtain algorithms that are robust and/or of 
minimum variance. 

• The fixed-point algorithm inherits most of the 
advantages of neural algorithms: It is parallel, dis- 
tributed, computationally simple, and requires little 
memory space. Stochastic gradient methods seem to 
be preferable only if fast adaptively in a changing 
environment is required. 

IV. SIMULATION AND EXPERIMENTAL RESULT 

First, we investigated the robustness of the contrast 
functions. We generated four artificial source signals, two 
of which were sub-Gaussian, and two were super-Gaussian. 
The source signals were mixed using several different 
random matrices, whose elements were drawn from a 
standardized Gaussian distribution. To test the robustness 
of our algorithms, four outliers whose values were ±10 
were added in random locations. The fixed-point algorithm 
for sphered data was used with the three different contrast 
functions in eq. (14–16), and symmetric 
orthogonalization. Since the robust estimation of the 
covariance matrix is a classical problem independent of the 
robustness of our contrast functions, we used in this 
simulation a hypothetical robust estimator of covariance, 
which was simulated by estimating the covariance matrix 
from the original data without outliers. In all the runs, it 
was observed that the estimates based on kurtosis (16) 
were essentially worse than the others, and estimates using 
G2 in (15) were slightly better than those using G1 in (14). 

These results confirm the theoretical predictions on 
robustness in Section 3. 

To investigate the asymptotic variance, i.e., efficiency, of 
the estimators, we performed simulations in which the 3 
different contrast functions were used to estimate one 
independent component from a mixture of 4 identically 
distributed independent components. We also used three 
different distributions of the independent components: 
uniform, double exponential (or Laplace), and the 
distribution of the third power of a Gaussian variable. The 
asymptotic mean absolute deviations (which are a 
robustified measure of error) between the components of 
the obtained vectors and the correct solutions were 
estimated and averaged over 1000 runs for each 
combination of non-linearity and distribution of 
independent component. The results in the basic, noiseless 
case are depicted in Fig. 1. As one can see, the estimates 
using kurtosis were essentially worse for super-Gaussian 
independent components. Especially the strongly super-
Gaussian independent component (cube of Gaussian) was 
estimated considerably worse using kurtosis. Only for the 
sub-Gaussian independent component, kurtosis was better 
than the other contrast functions. There was no clear 
difference between the performances of the contrast 
functions G1 and G2. Next, the experiments were repeated 
with added Gaussian noise whose energy was 10% of the 
energy of the independent components. The results are 
shown in Fig. 2. This time, kurtosis did not perform better 
even in the case of the sub-Gaussian density. The robust 
contrast functions seem to be somewhat robust against 
Gaussian noise as well. 

We also studied the speed of convergence of the fixed-point 
algorithms. Four independent components of different 
distributions (two sub Gaussian and two super Gaussian) 
were artificially generated, and the symmetric version of 
the fixed-point algorithm for sphered data was used. The 
data consisted of 1000 points, and the whole data was used 
at every iteration. We observed that for all three contrast 
functions, only three iterations were necessary, on the 
average, to achieve the maximum accuracy allowed by the 
data. This illustrates the fast convergence of the fixed-point 
algorithm. In fact, a comparison of our algorithm with 
other algorithms was performed in [13], showing that the 
fixed-point algorithm gives approximately the same 
statistical efficiency as other algorithms, but with a 
fraction of the computational cost. 

V. CONCLUSION 

The problem of linear independent component analysis 
(ICA), which is a form of redundancy reduction, was 
addressed. Following Comon [7], the ICA problem was 
formulated as the search for a linear transformation that 
minimizes the mutual information of the resulting 
components. This is roughly equivalent to finding 
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directions in which negentropy is maximized and which 
can also be considered projection pursuit directions [16]. 
The novel approximations of negentropy introduced in 
[19] were then used for constructing novel contrast 
(objective) functions for ICA. This resulted in a 
generalization of the kurtosis-based approach in [7, 9], and 
also enabled estimation of the independent components 
one by one. The statistical properties of these contrast 
functions were analyzed in the framework of the linear 
mixture model, and it was shown that for suitable choices 
of the contrast functions, the statistical properties were 
superior to those of the kurtosis- based approach. This was 
the family of fixed-point algorithms that are not neural in 
the sense that they are non-adaptive, but share the other 
benefits of neural learning rules. The main advantage of 
the fixed-point algorithms is that their convergence can be 
shown to be very fast (cubic or at least quadratic). 
Combining the good statistical properties (e.g. robustness) 
of the new contrast functions, and the good algorithmic 
properties of the fixed- point algorithm, a very appealing 
method for ICA was obtained. Simulations as well as 
applications on real-life data have validated the novel 
contrast functions and algorithms introduced. Some 
extensions of the methods introduced in this paper are 
presented in [20], in which the problem of noisy data is 
addressed, and in [22], which deals with the situation 
where there are more independent components than 
observed variables. 
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