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Abstract - The 3D integration is helpful in improving the per-

formance and density of electronic systems. Their codesign is 

required however, since the thermal and electrical performances 

for 3D integration are related to each other. To address these 

optimization problems in engineering, a promising new ap-

proach in artificial intelligence, Machine learning is employed. 

In this paper, for the optimization of 3D integrated circuits, we 

employ machine learning technique where in the electrical and 

thermal properties of the design need to be analyzed together to 

maximize the performance. The modelling of such systems can 

be challenging due to the multiscale geometries involved, which 

increase the computation time per iteration. In this paper, we 

show that machine learning can be applied to such systems to 

achieve the desired performance where multiple parameters can 

be optimized with minimum number of iterations. These results 

have been compared with other promising optimization tech-

niques in this paper.  The results show that on an average 4.4%, 

31.1%, 6.9% improvement in temperature gradient, CPU time 

and skew are possible using machine learning, as compared 

with other techniques. 

I. INTRODUCTION 

Continuous growth in circuit density and performance of 

electronic systems has resulted in new technologies to real-

ize these goals. Three-dimensional integration, an innova-

tive technique in systems packaging, provides solutions for 

increasing performance and density of electronic systems 

[1]. However, improved power and circuit density also re-

sults in the increase of heat flux, which in turn increases 

temperature and causes thermal related reliability problems 

[2]. Increased temperature and their gradients will degrade 

electrical performance, as it can have a direct impact on 

clock skew. Since electrical performance and thermal per-

formance are related to each other through joule heating, 

their combined analysis is required for predicting the tem-

perature distribution accurately [3]. Additionally, the clock 

tree needs to be modeled in the presence of the temperature 

distribution for estimating clock skew [3]. Since a signifi-

cant number of parameters such as physical geometries, 

interface materials, fan speed, and so on have a direct influ-

ence on the temperature profile, these parameters must be 

suitably tuned to achieve the desired electrical perfor-

mance. Hence, this gives rise to a multivariate system op-

timization problem. In this paper, the attributes of the prob-

lem require: 1) black box optimization since the output 

function is unknown; 2) possible application to nonconvex 

response surfaces, since the system behavior is unknown a 

priori; and 3) minimizing iterations for attaining optima due 

to the Multiphysics and multiscale modeling involved 

which increases the computational time. 

   Several statistical methods have been proposed by recent 

studies such as worst case and Monte Carlo analyses [4] to 

optimize a large number of design parameters. Due to the 

large number of simulation cases and expensive computa-

tional overhead for these methods, others have proposed 

approaches that reduce the number of simulations, using 

design of experiments (DOEs) [5]. However, the DOE ap-

proach has restrictions such as: 1) interactions between 

parameters need to be as small as possible and 2) the num-

ber of levels is normally limited to below three. Moreover, 

these techniques can lead to quantization error during opti-

mization, due to their implementation at discrete points in 

the problem space. 
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Fig. 1. Optimization methods applied to a predefined 

function. (a) Multistart (function counts = 345). (b) 

Global search (function counts = 273). (c) Pattern 

search (function counts = 272). (d) Genetic algorithm 

(function counts =2650). (e) BO (function counts = 100) 

[8]. 

   Other approaches for global optimization are also availa-

ble, as discussed in [6]. As an example, global optimization 

algorithms typically require vast computing resources due 

to a combination of large compute time for each data set 

and number of data sets. As shown in Fig. 1(a)–(d), global 

optimization algorithms when applied to ―peaks‖ function, 

which is an example function for two variables in MAT-

LAB, required between 272–2650 function counts to con-

verge to the minimum value. In contrast, machine learning 

based on Bayesian optimization (BO) [7] applied to the 

same function, required just 100 function counts to con-

verge to the minimum, as shown in Fig. 1(e). Function 

count represents the number of objective function evalua-

tions during the optimization process, where each iteration 

can require multiple function counts. This was our main 

motivation for investigating machine learning methods in 

this paper. In addition, such methods can be applied to non-

convex, black box optimization problems as well, which 

was another requirement. 

   Machine learning has three elements, task, experience, 

and performance, which consists of two phases, training, 

and evaluation/execution, as shown in Fig. 2. ―Task‖ and 

―performance‖ represent training and target respectively, 

while ―experience‖ is used to improve the target perfor-

mance [9]. 

Though there are several algorithms available in the litera-

ture for machine learning, our focus in this paper is onBO 

due to its capability for handling a large number of input 

parameters and its quick convergence [7]. Machine learning 

methods have been applied to electromagnetic problems 

[11], static timing analysis [12], high-speed interconnect 

systems [13], and time domain performance estimation [14] 

in the past. In this paper, to minimize temperature and tem-

perature gradients, we apply machine learning for the opti-

mization of 3-D ICs and systems. 

 

Fig. 2. Concept of machine learning consists of training 

and evaluation/execution phases [9], [10]. 

   For minimizing the number of training data sets required, 

we chose BO with Gaussian process (GP), since GP helps 

improve the performance [7]. Several machine learning 

methods based on support vector machine and spare-

vertical link have been discussed in the past for optimizing 

electrical circuits with minimum training data [15] and for 

optimizing 3-D circuits [16]. However, these methods re-

quired expense for problem-dependent hyper-parameter 

and complex allocation problem, respectively, therefore BO 

method is more efficient for optimization. In [17], a prelim-

inary application of machine learning for 1-D problems was 

discussed. In this paper we expand [17] to include multiva-

riable optimization along with correlation of the solver with 

measurements and convergence study. 

   This paper is organized as follows: in Section II  we de-

scribe the problem in the context of 3-D integration and we 

discuss about a test chip for validating the solver with mea-

surements; in Section III we discuss the system optimiza-

tion using machine learning with results being provided in 

Section IV; followed by conclusions in Section V. 

 

Fig. 3. Configuration of a 3-D system for optimization. 

II. PROBLEM DEFINITION 

A. 3D Integrated System 

Our objective in this paper is to minimize the global skew 
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caused due to temperature and temperature gradients in 3-D 

systems. We take the help of simulated temperature profiles 

superimposed on to temperature-sensitive clock tree to es-

timate the skew. 

   An example of a 3-D integrated system comprising of 

stacked dies, interposer, and printed circuit board (PCB), is 

shown in Fig. 3. To build the full system model of 

chip/package/PCB, we rely on an iterative solver [18] 

based on the finite volume method which numerically 

solves the coupled thermal and electrical partial differential 

equations. The solver uses a volumetric cell for discretiza-

tion and incorporates the user defined conduction and con-

vection boundary conditions. 

   The solver uses a nonuniform grid and domain decompo-

sition to deal with the multiscale geometries and accounts 

for multiple materials in the structure associated die, inter-

poser, and PCB by implementing the necessary boundary 

conditions between cells containing different materials 

properties. 

   We assume power maps on the chip [3] and use noncon-

formal domain decomposition and parameterized model 

order reduction techniques; as described in [18]; to com-

pute the temperature profiles. Signal and power integrity 

performance, such as skew, noise, and impedance, are then 

computed with the help of a circuit solver, which includes 

temperature gradients and power delivery network response 

super-imposed on an H tree clock network containing tem-

perature-dependent nonlinear clock buffers and intercon-

nect models [3]. This procedure, as shown in Fig. 4 and 

discussed in detail in [3] results in the computation of the 

temperature distribution across the die along with tempera-

ture dependent skew, jitter and power supply noise for the 

clock tree in the center die. In this paper, our main focus is 

on optimizing the temperature distribution on the center die 

and computing the resultant skew on the clock distribution 

network (CDN). It is important to note that temperature 

gradient has a significant impact on clock skew [3]. 

 

Fig. 4. Flow of electrical–thermal simulation for 3-D 

system design. 

B. Materials and Methods 

All computations in this paper are based on the electrical– 

thermal solver described in [18]. To calibrate the accuracy 

of the results, a custom IC was designed, and a test vehicle 

fabricated. The test chip contained both monitoring circuits 

and temperature generation. Alhough the test vehicle did 

not contain a 3-D stack with TSVs due to limited availabili-

ty, I believe that the test vehicle provides a method for cali-

bration and attests to the accuracy of the simulations. 

   On-chip heaters implemented using polysilicon resistors 

were used to generate the heat while MOS diodes were 

used to record the temperature. The dimension of on-chip 

heaters was 100 μm×100 μm and these heaters were im-

plemented on the poly-silicon layer. Sixteen pairs of hea-

ters, temperature sensors and MOS diodes were placed on a 

4 ×4 grid on the chip which measured 3.8 mm ×3.8 mm. 

   The chip consisted of six metal layers and was fabricated 

using the 180-nm process. This method was used to design 

and fabricate the prototype, since it was part of a lowcost-

multiproject wafer. Since our objective was to validate the 

models and modeling process, the we chose the180 nm 

technology node. The specifications of the CMOS process 

are shown in Table I. The layout of the chip is shown in 

Fig. 5(a). The fabricated chip was directly bonded to a PCB 

(chip-on-board), which measured 100 mm ×100 mm, as 

shown in Fig. 5(b). 

 

Fig. 5. (a) Chip layout. (b) Fabricated PCB and wire-

bonded chip. 

C.Validation of Electrical–Thermal Solver 

   On-chip temperature gradients were measured using 

monitoring blocks and temperature generating. By varying 

resistance and input voltage we induced variable current to 

each heater with resistor networks built on test board. We 

used temperature monitoring circuits with diodes to meas-

ure the local temperature, Fig. 6(a) and (b) shows the 

measured I–V profile of temperature monitoring circuits 
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and the measured I–V curves for different temperatures, 

respectively.  

Table 1. Fabrication process specifications 

Process 180nm cmos 

Layers 1 polysilicon layer, 6 metal layers 

Devices 
1.8V(thin-oxide)/3.3V(thick-

oxide)/5V 

Min. gate length 
0.18µm for 1.8V, 0.30/0.35µm for 

2.5V 

Substrate P Substrate with N wells 

 

 

Fig. 6. (a) Measured I–V profile of temperature moni-

toring circuits.(b) I–V profile with temperature varia-

tions. 

 

Fig. 7. (a) Power maps used for simulation and mea-

surement. (b) Measuredtemperature profiles. (c) Simu-

lated temperature profiles. 

The power consumed by each heater was calculated by a 

voltage source and resistor divider resulting in a power map 

as shown in Fig. 7(a). The electrical–thermal solver was 

used to compute the temperature distribution on the die for 

the test vehicle in Fig. 5. Since the typical heat transfer 

coefficient for natural convection is around 5 W/(m2 ·K) 

[19], a heat transfer coefficient of 4.0 W/(m2 ·K) was used 

as the convection boundary condition for analysis, which 

accounts for any radiation effects as well. Fig. 7(b) and (c) 

shows the simulated and measured temperature distribution 

for the power map used in Fig. 7(a). The measured results 

are well correlated with the electrical–thermal simulations. 

From Fig. 7, the correlation is promising for minimum and 

maximum temperatures for the three power maps (11.9%–

15.0% and 2.2%–3.4% error in simulations) while the error 

is larger for the temperature gradients because of the small-

er values involved. All the same, these correlations provide 

a reasonable degree of confidence in the simulated tem-

peratures, as there is some inaccuracy in the position of the 

heaters and monitoring circuits due to the 4×4 grid used for 

the chip, as opposed to a much finer nonuniform grid used 

in the simulations. 

III. OPTIMIZING THE SYSTEM 

A. Bayes’ Theorem 

BO originated from a well-known equation in probability 

theory and statistics, called Bayes’ theorem. Bayes’ theo-

rem [20] can be applied to machine learning using 

𝑷(𝐡|𝐃) =
𝑷(𝐃|𝐡)

𝑷(𝑫)
    (1) 

    In (1) ―P(D)‖ and ―P(h)‖ are the probabilities of observ-

ing ―D‖ and ―h,‖ respectively. They are referred to as the 

prior over data ―D‖ and hypothesis ―h,‖ respectively. 

―P(D|h)‖ is the probability of observing data ―D‖ given a 

hypothesis ―h‖ and is referred to as the likelihood while 

P(h|D) is the probability of hypothesis ―h‖ given data ―D‖ 

also called the posterior. 

 

Fig. 8. Black box function with multivariable for 3-D 

system design. 

   Equation (1) interprets Bayes’ rule regarding possibilities 

of multiple events, before (prior to) and after (posterior to) 

event which can be rewritten in the form 

𝑃(ℎ|𝐷) ∝
𝑃  𝐷 ℎ  𝑃(ℎ)

𝑃(𝐷)
                                     (2) 

where, the proportionality symbol indicates that if ―h‖ va-

ries but keeping ―D‖ fixed, the left-hand side is equal to a 

constant times the right-hand side. In words, posterior is 

proportional to prior times likelihood: determined by the 
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Bayes factor [20]. This forms the framework for BO used 

in this paper. 

B. Black Box Function 

   For the 3-D system in Fig. 3, the input parameters ―x‖ 

that needs to be optimized to achieve a target output ―f (x)‖ 

are shown in Fig. 8. The black box function f (x) is ob-

tained by using the electrical–thermal solver as discussed 

earlier. Based on sensitivity analysis, we picked five input 

variables for optimization which are, heat transfer coeffi-

cient (determined by the air flow rate), thermal conductivi-

ty of thermal interface material (TIM), TIM thickness, PCB 

and thermal conductivity of under-fill (UF) material, while 

the target parameters chosen were maximum temperature 

and temperature gradient. The improvement in clock skew 

resulting from the temperature distribution was used as a 

metric for the optimization. 

   The target parameters namely, maximum temperature and 

temperature gradient were combined to form the function f 

(x) by assigning weights for each of the parameters, as ex-

plained in the coming section. 

C. Bayesian Optimization with Gaussian Process 

In Bayesian statistics, the uncertainty is modelled with a 

prior probability distribution. In other words, we estimate 

the distribution and this information is used to decide the 

point evaluated next, which is a key point of BO that diffe-

rentiates it from other methods. 

   For GP priors, the model uses a joint Gaussian with the 

entire set of available observation points. In this optimiza-

tion, the function ― f ‖ is defined as a GP prior with mean 

function ―m‖ and covariance function ―k.‖ Based on prior 

observation points ―M‖ for the variable ―x,‖ the prior func-

tion f (x1:M) for each variable is defined as a GP given by 

f (x1:M) = N(μ(x1:M), k)                       (3) 

where x1:M represent the ―M‖ observation points for each 

input variable, μ(x1:M) is the corresponding mean vector 

and k (also called the kernel) is the corresponding cova-

riance matrix given by [21] 

𝝁(𝒙 𝟏 :𝑴)  =  [𝝁 (𝒙 𝟏 )𝝁 (𝒙 𝟐 ) · · · 𝝁 (𝒙𝑴 )]𝑻  (4) 

𝑲 𝒙 𝟏 :𝑴 =   
𝒌 (𝒙 𝟏 , 𝒙 𝟏 ) · · · 𝒌 (𝒙 𝟏 , 𝒙𝑴 )

⋮ ⋱ ⋮
𝒌 (𝒙𝑴 , 𝒙 𝟏 ) … 𝒌 (𝒙𝑴 , 𝒙𝑴 )

  (5) 

where the covariance is defined by 

𝒌  𝒙𝒊 , 𝒙𝒋  = 𝒆𝒙𝒑   −
𝟏

𝟐
 𝒙𝒋  −  𝒙𝒊  𝟐  .  (6) 

   To predict f (xM+1) at the next data point, we consider 

the joint distribution over f of the old data points and new 

data point, as shown in (7). The optimization problem now 

relates to maximizing (or minimizing) f (x) subject to x 

where f (xM+1) can be a nonconvex black-box function 

defined by 

 
𝒇 (𝒙 𝟏 :𝑴)
𝒇 (𝒙𝑴 + 𝟏 )

 ~𝑵   
𝒎(𝒙 𝟏 :𝑴)
𝒎(𝒙𝑴 + 𝟏 )

  ,  
𝑲 𝒌
𝒌 𝑻 𝒌 (𝒙 𝑴+𝟏 , 𝒙 𝑴+𝟏 )

   

       (7) 

where K is the kernel matrix and k is the kernel function 

given by (5) and (6). 

   From [21], the mean and variance of f(xM+1) can be 

computed as 

𝝁 𝒙 𝑴+𝟏  = 𝒌 𝑻𝑲−𝟏 𝒇 𝟏 :𝑴   (8) 

𝝈 𝟐 (𝒙 𝑴+𝟏 )  =  𝒌 (𝒙 𝑴+𝟏 , 𝒙 𝑴+𝟏 )  − 𝒌 𝑻𝑲−𝟏𝒌 .           (9) 

   Such an approach can be extended to N independent input 

variables, where in this paper we use N <= 5. 

This technique gives a posterior distribution of the un-

known function. We can choose the next value of the func-

tion representing the targeted values by either maximizing 

or minimizing an acquisition function (explained later). 

 

Fig. 9. Proposed flow for electrical–thermal simulation 

using BO. (a) Electrical–thermal simulation. (b) BO. 

The typical flow of BO using GP [22] is as follows. 

1) Choose initial points of N input variables x and evaluate 

f(x) including error (with regard to the target value de-

sired). 

2) While [f(x)−target] ≤error, calculate Bayesian posterior 

distribution on ―f‖ from the points observed. 

3) Using the prior observation points and acquisition func-

tion determine the point to evaluate next. 

4) Stop if the error criterion is met and report the point with 

the best value. 

   This approach is based on the infinite-metric GP optimi-

zation algorithm presented in [23]. 

   Based on BO with GP, the flow for system optimization 

is as shown in Fig. 9 where the electrical–thermal simulator 

is used to compute the black box function. In the flowchart, 

acquisition functions are used to choose the posterior. In 

general, three acquisition functions have been widely used 

in the open literature for GP based optimization, namely 

[7]: probability of improvement (PI), expected improve-

ment (EI), and upper/lower confidence bound (UCB/LCB) 
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[24]– [26]. The goals of the first two strategies are to max-

imize the PI and the EI of the current value, respectively. 

The third strategy is targeted toward exploiting 

UCBs/LCBs with high probability using acquisition func-

tions that minimize regret [7]. In this paper, LCB is used, 

described by 

𝐱 𝐌+𝟏 = 𝐚𝐫𝐠𝐦𝐢𝐧   µ 𝐱 𝐢  − 𝛋𝛔 (𝐱 𝐢 )   

 (10) 

where κ ≥0 and κ = (2 logπ2x2/12ν)1/2, (where ν equals 

0.05), and μ(xi ) and σ(xi ) are determined from (8) and (9) 

for each input parameter. It is important to note that the 

selection of the next sample does not require the computa-

tion of f(x), since (10) is computed only based on the pre-

vious results, which minimizes computational time. Since 

the entireprocedure minimizes the number of points at 

which f(x) is computed [21], the computational time re-

quired for optimization can be reduced significantly. Unlike 

most optimization techniques, this approach provides a 

posterior distribution of the unknown function and hence 

the search involves determining the function (rather than 

the output itself) that is closer to the targeted goal. 

   As an example, for choosing the next value, Fig. 10 

shows the distribution of the function with two random 

variables X1 and X2, along with the posterior mean and 

variance across the input parameter space, the distribution 

of the acquisition function defined using the LCB and se-

lection of the next point. The minimum of the acquisition 

function is chosen as the next point in the input parameter 

space, shown using a triangle marker in Fig. 10. In the fig-

ure, X1 represents the heat transfer coefficient of the air 

flow in W/(m2 ·K) and X2 represents thermal conductivity 

of the TIM material in W/(m ·K) for the 3-D system being 

optimized, with the target function f(x) described in a later 

section. 

 

Fig. 10. Distribution plots of (a) function, (b) posterior 

mean, (c) posterior variance, and (d) LCB acquisition 

function for optimization of the 3-D system. 

IV. RESULTS 

A. System Details 

A 3-D system for optimization comprises of stacked 

dies, interposer, and PCB, as shown in Fig. 3 of Section II. 

We use multiple power maps as described in [17] to simu-

late the 3-D structure where the power maps are randomly 

distributed on the top and bottom die. The total power for 

the three dies was 50 W with 20 W for the bottom and the 

top die respectively, and 10 W for the center die. The cen-

ter die incorporates the CDN, which is used to compute the 

skew. The clock buffers and interconnects used for the 

CDN were based on the 45-nm process [27], as described 

in [3]. The three power maps were used to reflect the three 

different temperature distributions. Fig. 11 shows the pow-

er maps used. 

B. Input Parameters 

As discussed earlier, five input parameters were se-

lected for optimization with details provided in Table II, 

along with their respective range. The parameters are, 

thermal conductivity of the TIM, air flow velocity or heat 

transfer coefficient, thermal conductivity of UF material, 

thermal conductivity of PCB, and thickness of TIM. The 

range for these parameters were chosen based on manufac-

turability. 

 

Fig. 11. Power maps used for optimization. 

TABLE 2 INPUT VARIABLES FOR OPTIMIZATION 

Parameter  Unit Min Nom Max 

Heat Transfer 

Coefficient 
x1 W/(m

2
.k) 1 5 10 

TIM property x2 W/(m.k) 1 1.2 1.4 

TIM thickness x3 mm 0.16 0.20 0.24 

UF material x4 W/(m.k) 0.3 4.3 8.3 

PCB material x5 W/(m.k) 0.3 0.3 4.3 
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Fig. 12. Response surface with a target value. 

C. Usage of Target Function for Multiobject Optimization 

There are two target parameters that are important for 

optimization namely, maximum temperature and tempera-

ture gradient on the center die. Limiting the maximum tem-

perature is important to maximize system reliability while 

minimizing the temperature gradient is required to minim-

ize clock skew. Both these parameters vary with the input 

parameters. 

As an example, the response surface of the function f in 

(11) is shown as a function of two parameters, namely TIM 

thickness and thermal conductivity in Fig. 12. The figure 

shows a surface where a combination of input parameters 

leads to a minima, where the minima here corresponds to a 

temperature and temperature gradient less than 120 °C and 

25 °C, respectively. Our goal in this paper is to achieve the 

target value for the maximum temperature and temperature 

gradient by tuning the input parameters through optimiza-

tion. Our target function is defined as 

𝐟  𝐲 𝟏 , 𝐲 𝟐  =  𝐰𝐢 ×𝟐
𝐢=𝟏 𝐲 𝐢    (11) 

where wiand yiare the weights and the selected outputs, 

respectively. In (11) 

y1 = maximum temperature TMAX 

and 

y2 = temperature gradient TGRAD. 

In this paper, we used weights of w1 = 0.34 and w2 = 

4.5 in (11) to define the target function. This was deter-

mined based on the importance of reducing the clock skew 

as opposed to minimizing the maximum temperature, 

though both are important to ensure a reliable system. 

D. Optimization with Multiple Input Parameters 

The target parameters defined in Table II were used 

along with the target function in (11) and three input para-

meters heat transfer coefficient, TIM thickness and TIM 

thermal conductivity to perform optimization using power 

map I in Fig. 11. Fig. 13 and Table III show the optimiza-

tion results. A total of 100 iterations were used. In Fig. 13, 

the sampling points used for each iteration are shown for 

the four cases evaluated in Table III (plotted only as a func-

tion of input variables X1 and X2). 

 

Fig. 13. Optimization results for heat transfer coeffi-

cient (X1) and TIM thermal conductivity (X2) showing 

convergence; TIM thickness (X3) is not plotted (N = 3). 

For Case (d), the sampled points are shown as a func-

tion of three input parameters in Fig. 14(a). The optimiza-

tion algorithm ―Starts‖ from an initial value, which 

represents the median of each parameter, and converges to 

the optimized value (indicated as ―End‖) in the figure. As 

can be noted from Fig. 14, the sampling is non uniform. 

The maximum temperature and temperature gradient before 

and after optimization on the center die containing the 

CDN are shown in Fig. 14(b). 

 

 

Fig. 14. Optimization results with target value of 

TMAX: 120.0 andTGRAD: 25.0. (a) Found Xs and (b) 

temperature. 
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TABLE 3 OPTIMIZATION RESULTS WITH VARIOUS TARGET VALUES 

Case 
Target 

TMAX 

Target 

TGRAD 
x1 x2 x3 TMAX TGRAD 

(a) 125.0 27.5 5.72 1.27 0.199 122.9 27.5 

(b) 120.0 27.5 8.83 1.30 120.2 120.2 27.5 

(c) 125.0 25.0 1.01 1.37 0.164 108.0 25.0 

(d) 120.0 25.0 1.01 1.37 0.164 108.1 25.0 

 

 

Fig. 15. Optimization with power map II. (a) Iterations 

shown as a functionof three parameters only. (b) Tem-

perature distribution. 

 

Fig. 16. Optimization with power map III. (a) Iterations 

shown as a function of three parameters only. (b) Tem-

perature distribution. 

   To verify the efficiency of the optimization procedure, a 

case study was performed with various power maps shown 

in Fig. 11 [17] with more input variables (N = 5) and with 

an iteration number of 200. Figs. 15 and 16 show the re-

sults ith power map II and power map III, respectively. The 

target values used for TMAX and TGRAD were 110 °C 

and 11 °C for power map II and 110 °C and 9 °C for power 

map III, respectively. Optimization results show conver-

gence to the target value in Figs. 15 and 16. The tempera-

ture distribution before and after optimization are also 

shown in these figures. Before optimization, power map II 

and power map III resulted in a clock skew of 51.8 and 

39.2 ps, respectively.  

 

Fig. 17. Comparison of convergence between pattern 

search, nonlinear solver, and BO (a) temperature gra-

dient and (b) thermal skew. 

After optimization, power map II and power map III re-

sulted in a clock skew of 44.2 and 33.0 ps, respectively. 

The optimization results are shown in Table IV. 

TABLE 4 OPTIMIZATION RESULTS WITH VARI-

OUS POWER MAPS 

Pow

er 

Map 

TMAX [⁰C] TGRAD [⁰C] Skew [ps] 

Be-

fore 

Af-

ter(%) 

Be-

fore 

Af-

ter(%) 

Be-

fore 

Af-

ter(%) 

I 
127.

4 

115.3 

(-

9.5%) 

27.4 

25.0 

(-

8.8%) 

108.

9 

93.7 

(-

14.0%) 
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II 
120.

6 

110.1 

(-

8.7%) 

12.7 

10.8 

(-

15.0%) 

51.8 

44.2 

(-

14.7%) 

III 
118.

8 

109.9 

(-

7.5%) 

10.0 

8.8 

(-

12.0%) 

39.2 

33.0 

(-

15.8%) 

 

TABLE 5 COMPARISON OF OPTIMIZATION PER-

FORMANCEAFTER 100 FUNCTION COUNTS 

 
Non-Linear 

Solver 

Pattern 

Search 

BO 

(This 

work) 

TGRAD [⁰C] 25.2(+5.9%) 24.5(+2.9%) 23.8 

CPU Time 

(normalized) 
1.38(+38.5%) 1.53(+52.6%) 1 

Skew [ps] 92.0(+4.5%) 96.2(+9.3%) 88.0 

 

E. Comparison 

     To compare the optimization performance with existing 

methods and algorithms, the number of function counts and 

optimized values were compared. Fig. 17 compares the 

optimization results, for temperature gradient and the re-

sulting skew for power map I and five input parameters, 

using BO, ―pattern search‖ (available in MATLAB) and 

―fmincon,‖ a constrained nonlinear minimization solver 

(also available in MATLAB). We chose the ―pattern 

search‖ and ―fmincon‖ algorithms for comparison since 

they led to fewer function counts as compared with other 

methods described in Fig. 1. After 100 function counts BO 

produced temperature gradient and thermal skew of 23.8 °C 

and 88.0 ps respectively as compared with 24.5 °C and 96.2 

ps using ―pattern search‖ and 25.2 °C and 92.0 ps using 

―fmincon,‖ as illustrated in Fig. 17. Fig. 17 also shows a 

faster convergence rate for BO as compared with ―pattern 

search‖ and ―fmincon‖ algorithms, especially during the 

early period. 

     A comparison of the optimization results including tem-

perature gradient, normalized CPU time for temperature 

gradient, and optimized thermal skew is shown in Table V. 

V. CONCLUSION 

 In this paper we presented machine learning combined 

with BO, for the optimization of the electrical–thermal per-

formance of 3-D integrated circuits and systems. The opti-

mization results and comparison with other techniques 

show several advantages with the proposed approach. Our 

conclusion is that the described method is suitable for the 

optimization of system-level electrical– thermal co-

simulation problems, (which often take long simulation 

time and an even large number of simulation cases), is ac-

curate and demands lower computational cost (−31.1% as 

CPU time) as compared with other traditional design opti-

mization methods. This method also showed the capability 

of handling a large number of input parameters with fast 

convergence and flexibility. This optimization approach 

using machine learning methods can become useful when 

system complexity increases along with many input para-

meters that need to be optimized simultaneously, especially 

for 3-D applications. Since many BO algorithms have been 

presented in the open literature, it can be believed that the 

efficiency of the optimization described in this paper can be 

increased further. 
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