

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Issue 174, Volume 74, Number 01, August 2020

www.ijspr.com IJSPR | 36

VLSI Architecture for PPI-MO based Matrix

Multiplication using Floating Point Multiplier

Shilpa Shukla1, Prof. Amrita Khera2

1Research Scholar, Department of Electronics and Communication, Trinity Institute of Technology & Research, Bhopal

2Assistant Professor, Department of Electronics and Communication, Trinity Institute of Technology & Research, Bhopal

Abstract— Due to advancement of new technology in the field of

VLSI and Embedded system, there is an increasing demand of

high speed and low power consumption processor. Speed of

processor greatly depends on its multiplier as well as adder

performance. In spite of complexity involved in floating point

arithmetic, its implementation is increasing day by day. Due to

which high speed adder architecture become important. Several

adder architecture designs have been developed to increase the

efficiency of the adder. In this paper, we introduce an

architecture that performs high speed IEEE 754 floating point

multiplier using carry select adder (CSA). Here we are introduced

two carry select based design. These designs are implementation

Xilinx Vertex device family.

Keywords— IEEE754, Single Precision Floating Point (SP FP),

Double Precision Floating Point (DP FP), Binary to Execess-1

Converter.

I. INTRODUCTION

The real numbers represented in binary format are known

as floating point numbers. Based on IEEE-754 standard,

floating point formats are classified into binary and

decimal interchange formats. Floating point multipliers

are very important in dsp applications. This paper focuses

on double precision normalized binary interchange format.

Figure 1 shows the IEEE-754 double precision binary

format representation. Sign (s) is represented with one bit,

exponent (e) and fraction (m or mantissa) are represented

with eleven and fifty two bits respectively. For a number is

said to be a normalized number, it must consist of'one' in

the MSB of the significand and exponent is greater than

zero and smaller than 1023. The real number is

represented by equations (i) & (2).

).1(2)1()(MZ BiasEs
 (1)

).1(2)1()1023(MantissaValue Exponentsignbit

(2)

Biasing makes the values of exponents within an unsigned

range suitable for high speed comparison.

IEEE 754 Standard Floating Point Multiplication Algorithm

A brief overview of floating point multiplication has been

explained below [5-6].

 Both sign bits S1, S2 are need to be Xoring together,

then the result will be sign bit of the final product.

 Both the exponent bits E1, E2 are added together

and then subtract bias value from it. So, we get

exponent field of the final product.

 Significand bits Sig1 and Sig2 of both the operands

are multiply including their hidden bits.

 Normalize the product found in step 3 and change

the exponent accordingly. After normalization, the

leading “1 “will become the hidden bit.

Above algorithm of multiplication algorithm is shown in

Figure 2.

E

2

E

1

XOR

S1 S2

Sig

1

Sig

2

- Bias

X3=X1*X2

 S3 Sig3 E3

NE NS

Figure 2: IEEE754 SP FP and DP FP Multiplier Structure,

NE: Normalized exponent, NS: Normalized Significand

Sign Bit Significand Biased Exponent

Si
1-bit 8/11-bit 23/52-bit

Figure 1: IEEE 754 Single Precision and Double Precision

Floating Point Format

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Issue 174, Volume 74, Number 01, August 2020

www.ijspr.com IJSPR | 37

II. DIFFERENT TYPES OF ADDER

Parallel Adder:-

Parallel adder can add all bits in parallel manner i.e.

simultaneously hence increased the addition speed. In this

adder multiple full adders are used to add the two

corresponding bits of two binary numbers and carry bit of

the previous adder. It produces sum bits and carry bit for the

next stage adder. In this adder multiple carry produced by

multiple adders are rippled, i.e. carry bit produced from an

adder works as one of the input for the adder in its

succeeding stage. Hence sometimes it is also known as

Ripple Carry Adder (RCA). Generalized diagram of parallel

adder is shown in figure 3.

Figure 3: Parallel Adder (n=7 for SPFP and n=10 for

DPFP)

An n-bit parallel adder has one half adder and n-1full adders

if the last carry bit required. But in 754 multiplier‟s

exponent adder, last carry out does not required so we can

use XOR Gate instead of using the last full adder. It not only

reduces the area occupied by the circuit but also reduces the

delay involved in calculation. For SPFP and DPFP

multiplier‟s exponent adder, here we Simulate 8 bit and 11

bit parallel adders respectively as show in figure 4.

Figure 4: Modified Parallel Adder (n=7 for SPFP and

n=10 for DPFP)

Carry Skip Adder:-

This adder gives the advantage of less delay over Ripple

carry adder. It uses the logic of carry skip, i.e. any desired

carry can skip any number of adder stages. Here carry skip

logic circuitry uses two gates namely “and gate” and “or

gate”. Due to this fact that carry need not to ripple through

each stage. It gives improved delay parameter. It is also

known as Carry bypass adder. Generalized figure of Carry

Skip Adder is shown in figure 5.

Figure 5: Carry Skip Adder

Carry Select Adder:-

Carry select adder uses multiplexer along with RCAs in

which the carry is used as a select input to choose the correct

output sum bits as well as carry bit. Due to this, it is called

Carry select adder. In this adder two RCAs are used to

calculate the sum bits simultaneously for the same bits

assuming two different carry inputs i.e. „1‟ and „0‟. It is the

responsibility of multiplexer to choose correct output bits

out of the two, once the correct carry input is known to it.

Multiplexer delay is included in this adder. Generalized

figure of Carry select adder is shown in figure 3.9. Adders

are the basic building blocks of most of the ALUs

(Arithmetic logic units) used in Digital signal processing

and various other applications. Many types of adders are

available in today‟s scenario and many more are developing

day by day. Half adder and Full adder are the two basic

types of adders. Almost all other adders are made with the

different arrangements of these two basic adders only. Half

adder is used to add two bits and produce sum and carry bits

whereas full adder can add three bits simultaneously and

produces sum and carry bits.

Figure 6: Carry Select Adder

KS Adder: - Processing of the KSA adder is structured with

pre-processing stage, carry generator and post processing

stage. Each block is having individual responsibilities. First

block of KSA is Pre- Processing that will generate and

propagate the carry. Processing of carry will be done over

the carry processing area and all the carry signal go through

the post processing block. In the pre pre-processing stage we

find the, generate and propagate signals from each inputs.

Eventually, all the designing levels of digital system or IC‟s

Packages depend on number of gates in a single chip that is

also called bottom up approach. Modified KS adder can be

reduced regarding the area or number of gates.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Issue 174, Volume 74, Number 01, August 2020

www.ijspr.com IJSPR | 38

Figure 7: Block Diagram of Kogge Stone Adder

III. PROPOSED DESIGN

In this design we have reduced the resource utilization in

terms of number of multipliers and registers in lieu of the

completion time. This design is particularly useful where

resources are limited and design can be compromised on

basis of increased completion time. The basic working

model for a 3 × 3 matrix-matrix multiplication is shown in

figure 7 below.

Considering the matrix – matrix multiplication of two n×n

matrices, the calculation is performed using n number of

multipliers, n number of registers and n-1 number of adders.

2n cycles are required to perform the matrix multiplication

operation. Each multiplier has two input ports: one each

from matrix A and B. In each cycle, n numbers of

multiplications are performed and the products are fed to the

adder block to give a single element of the output matrix, C.

The data flow to the multipliers are such that,
thk multiplier

is fed from
thk column of matrix A and

thk row of matrix

B, where 1 < k < n. At the
thk multiplier, each element from

matrix A is repeated for n consecutive cycles whereas the

elements from matrix B are cycled back after n cycles. The

partial products are then fed to the adder which computes

the final result.

For a better understanding of the process, let us consider the

matrix multiplication for n = 3 (as shown in figure 1). In this

case, 3 multipliers and 3 registers are used to calculate and

store the partial products respectively. These partial products

are then fed to the adder block to compute the final result.

The first multiplier receives input from the first column of

matrix A (ak1) and first row of matrix B (b1k), where. Each

element of the matrix A at the first multiplier is repeated for

3 cycles, such that the data flow can be represented as

111111 aaa 212121 aaa 313131 aaa .Similarly, at the first

multiplier, the elements of B are repeated after 3 cycles,

such that the input data-flow will be

131211 bbb 131211 bbb 131211 bbb .

Figure 8: Proposed PPI – MO Design for n = 3

The other two multipliers receive the component of A and B

in the similar order as the first multiplier. After the

multiplication, the partial products are fed to the adder

which computes the elements of output matrix C in row

major order given by 131211 ccc 232221 ccc 333231 ccc . So the

entire matrix multiplication operation is performed in
2n =9

cycles.

IEEE 754 Floating Point:- In IEEE754 standard floating

point representation, 8 bit Exponent field in single

precision floating point (SP FP) representation and 11 bit in

double precision floating point (DP FP) representation are

need to add with another 8 bit exponent and 11 bit exponent

respectively, in order to multiply floating point numbers

represented in IEEE 754 standard as explained earlier.

Ragini et al. [10] has used parallel adder for adding

exponent bits in floating point multiplication algorithm. We

proposed the use of 8-bit modified CSA with dual RCA and

8-bit modified CSA with RCA and BEC for adding the

exponent bits. We have found the improved area of 8-bit

modified Carry select adder with RCA and BEC over the 8-

bit modified CSA with dual RCA.

o Sign bit calculation

To calculate the sign bit of the resultant product for SP FP

and DP FP multiplier, the same strategy will work. We just

need to XOR together the sign bits of both the operands. If

the resultant bit is „1‟, then the final product will be a

negative number. If the resultant bit is „0‟, then the final

product will be a positive number.

o Exponent bit calculation

b3

1

b3

2

b3

3

b2

1

b2

2

b2

3

b1

1

b1

2

b1

3

a11 a21 a31

a12 a22 a32

a13 a23 a33

c33 c32 c31 c23 c22 c21 c13 c12 c11

Adder Adder Adder

Pre-Processing (Generation)

Pre-Processing (Generation)

Pre-Processing (Generation)

…………………

………

…………………

………

Output of KS Adder

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Issue 174, Volume 74, Number 01, August 2020

www.ijspr.com IJSPR | 39

Add the exponent bits of both the operands together, and

then the bias value (127 for SPFP and 1023 for DPFP) is

subtracted from the result of addition. This result may not be

the exponent bits of the final product. After the significand

multiplication, normalization has to be done for it.

According to the normalized value, exponents need to be

adjusted. The adjusted exponent will be the exponent bits of

the final product.

o Significand bit calculation

Significand bits including the one hidden bit are need to be

multiply, but the problem is the length of the operands.

Number of bits of the operand will become 24 bits in case of

SP FP representation and it will be 53 bits in case of DP FP

representation, which will result the 48 bits and 106 bits

product value respectively. In this paper we use the

technique of break up the operands into different groups

then multiply them. We get many product terms, add them

together carefully by shifting them according to which part

of one operand is multiplied by which part of the other

operand. We have decomposed the significand bits of both

the operands ain four groups. Multiply each group of one

operand by each group of second operand. We get 16

product terms. Then we add all of them together very

carefully by shifting the term to the left according to which

groups of the operands are involved in the product term.

Partition Multiplier:-

Algorithm for partition method

t1 : in STD_LOGIC_VECTOR (7 downto 0);

t2 : in STD_LOGIC_VECTOR (7 downto 0);

t3 : out STD_LOGIC_VECTOR (15 downto 0));

h1<=t1(3 downto 0);

h2<=t1(7 downto 4);

h3<=t2(3 downto 0);

h4<=t2(7 downto 4);

su1<=h1*h3;

su2<=h1*h4;

su3<=h2*h3;

su4<=h2*h4;

ad1<=("00000000" & su1);

ad2<=("0000" & su2 & "0000");

ad3<=("0000" & su3 & "0000");

ad4<=(su4 & "00000000");

t3<=ad1 + ad2 + ad3 + ad4;

IV. SIMULATION RESULT

All the designing and experiment regarding algorithm that

we have mentioned in this paper is being developed on

Xilinx 6.2i updated version. Xilinx 14.1i has couple of the

striking features such as low memory requirement, fast

debugging, and low cost. The latest release of ISETM

(Integrated Software Environment) design tool provides the

low memory requirement approximate 27 percentage low.

ISE 6.2i that provides advanced tools like smart compile

technology with better usage of their computing hardware

provides faster timing closure and higher quality of results

for a better time to designing solution.

Table I: Comparison Result

Structure Dimension Slice LUTs IOBs
Delay

(ns)

Previous

Design

[1] 3×3

112 164 81 15.517

MM using

PPI-MO
93 154 74 15.058

Previous

Design

[1] 4×4

248 412 96 17.227

MM using

PPI-MO
221 388 92 15.058

V. CONCLUSION

IEEE754 standardize two basic formats for representing

floating point numbers namely, single precision floating

point and double precision floating point. Floating point

arithmetic has vast applications in many areas like robotics

and DSP. Delay provided and area required by hardware are

the two key factors which are need to be consider Here we

present single precision floating point multiplier by using

two different adders namely modified CSA with dual RCA

and modified CSA with RCA and BEC. Among all two

adders, modified CSA with RCA and BEC is the least

amount of Maximum combinational path delay (MCDP).

Also, it takes least number of slices i.e. occupy least area

among all two adders.

REFERENCES

[1] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, “A

Simple Novel Floating Point Matrix Multiplier VLSI

Architecture for Digital Image Compression Applications”,

2nd International Conference on Inventive Communication

and Computational Technologies (ICICCT 2018).

[2] Chiou-Yng Lee, Pramod Kumar Meher, Chia-Chen Fan, and

Shyan-Ming Yuan, “Low-Complexity Digit-Serial Multiplier

Over G F(2m) Based on Efficient Toeplitz Block Toeplitz

Matrix–Vector Product Decomposition”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 2016.

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689

Issue 174, Volume 74, Number 01, August 2020

www.ijspr.com IJSPR | 40

[3] K. Deergha Rao, Ch. Gangadhar and Praveen K Korrai,

“FPGA Implementation of Complex Multiplier Using

Minimum Delay Vedic Real Multiplier Architecture”, IEEE

Uttar Pradesh Section International Conference on Electrical,

Computer and Electronics Engineering (UPCON) Indian

Institute of Technology (Banaras Hindu University) Varanasi,

India, Dec 9-11, 2016.

[4] Ms. S. V. Mogre and Mr. D. G. Bhalke “Implementation of

High Speed Matrix Multiplier using Vedic Mathematics on

FPGA”, 2015 International Conference on Computing,

Communication Control and Automation.

[5] Pramod Kumar Meher, “Hardware-Efficient Systolization of

DA-Based Calculation of Finite Digital Convolution,” IEEE

Transaction on Circuits and Systems, vol. 53, no. 8, pp. 707 -

711, 2006

[6] Ju-Wook Jang, Seonil B. Choi, and Viktor K. Prasanna,

“Energy- and Time-Efficient Matrix Multiplication on

FPGAs”, IEEE Transaction on Very Large Scale Integration

(VLSI) Systems, vol. 13, no. 11, pp. 1305 – 1319, 2005

[7] S. Tugsinavisut, S. Jirayucharoensak and P. A. Beerelt, “An

Asynchronous Pipeline Comparisons with Applications to

DCT Matrix-vector Multiplication,” in Proceedings of the

2003 International Symposium on Circuits and

Systems(ISCAS), vol. 5, pp. V-361 - V-364, 2003.

[8] Amira, A. Bouridane, and P. Milligan, “Accelerating matrix

product on reconfigurable hardware for signal processing,” in

Proceedings 11th International Conference on Field-

Programmable Logic and Its Applications (FPL), pp. 101 –

111, 2001.

[9] O. Mencer, M. Morf, and M. J. Flynn, “PAM-Blox: High

performance FPGA design for adaptive computing,” in Field

Programmable Custom Computing Machines (FCCM), pp.

167 – 174, 1998.

[10] Pramod Kumar Meher, “Hardware-Efficient Systemization of

DA-Based Calculation of Finite Digital Convolution,” IEEE

Transaction on Circuits and Systems, vol. 53, no. 8, pp. 707 -

711, 2006

[11] Ju-Wook Jang, Seonil B. Choi, and Viktor K. Prasanna,”

Energy- and Time-Efficient Matrix Multiplication on FPGAs”,

IEEE Transaction on Very Large Scale Integration (VLSI)

Systems, vol. 13, no. 11, pp. 1305 – 1319, 2005.

[12] Campbell, Scott J. and Sunil P.Khatri. “Resource and delay

efficient matrix multiplication using newer FPGA devices”

ACM Great Lakes Symposium on VLSI (2006).

[13] C Paidimarri.A, A.Cervero, P.Brisk and P.Ienne. “FPGA

Implementation of a single – precision floating-point

multiply-accumulator with singlie-cycle accumulation,”

proceedings of the IEEE symposium on Field Programmable

Custom Computing Machines, April 5-7,2009 Karchi,

Pakistan, pp-267-270.

