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Abstract— Due to advancement of new technology in the field of 

VLSI and Embedded system, there is an increasing demand of 

high speed and low power consumption processor. Speed of 

processor greatly depends on its multiplier as well as adder 

performance. In spite of complexity involved in floating point 

arithmetic, its implementation is increasing day by day.  Due to 

which high speed adder architecture become important. Several 

adder architecture designs have been developed to increase the 

efficiency of the adder. In this paper, we introduce an 

architecture that performs high speed IEEE 754 floating point 

multiplier using carry select adder (CSA). Here we are introduced 

two carry select based design. These designs are implementation 

Xilinx Vertex device family.   

Keywords— IEEE754, Single Precision Floating Point (SP FP), 

Double Precision Floating Point (DP FP), Binary to Execess-1 

Converter. 

I. INTRODUCTION 

The real numbers represented in binary format are known 

as floating point numbers. Based on IEEE-754 standard, 

floating point formats are classified into binary and 

decimal interchange formats. Floating point multipliers 

are very important in dsp applications. This paper focuses 

on double precision normalized binary interchange format. 

Figure 1 shows the IEEE-754 double precision binary 

format representation. Sign (s) is represented with one bit, 

exponent (e) and fraction (m or mantissa) are represented 

with eleven and fifty two bits respectively. For a number is 

said to be a normalized number, it must consist of'one' in 

the MSB of the significand and exponent is greater than 

zero and smaller than 1023. The real number is 

represented by equations (i) & (2). 
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Biasing makes the values of exponents within an unsigned 

range suitable for high speed comparison. 

 

IEEE 754 Standard Floating Point Multiplication Algorithm 

A brief overview of floating point multiplication has been 

explained below [5-6]. 

 Both sign bits S1, S2 are need to be Xoring together, 

then the result will be sign bit of the final product. 

 Both the exponent bits E1, E2 are added together 

and then subtract bias value from it. So, we get 

exponent field of the final product. 

 Significand bits Sig1 and Sig2 of both the operands 

are multiply including their hidden bits. 

 Normalize the product found in step 3 and change 

the exponent accordingly. After normalization, the 

leading “1 “will become the hidden bit. 

Above algorithm of multiplication algorithm is shown in 

Figure 2. 
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Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, 

NE: Normalized exponent, NS: Normalized Significand 
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1-bit                   8/11-bit                           23/52-bit 

Figure 1: IEEE 754 Single Precision and Double Precision 

Floating Point Format 
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II. DIFFERENT TYPES OF ADDER 

Parallel Adder:- 

Parallel adder can add all bits in parallel manner i.e. 

simultaneously hence increased the addition speed. In this 

adder multiple full adders are used to add the two 

corresponding bits of two binary numbers and carry bit of 

the previous adder. It produces sum bits and carry bit for the 

next stage adder. In this adder multiple carry produced by 

multiple adders are rippled, i.e. carry bit produced from an 

adder works as one of the input for the adder in its 

succeeding stage. Hence sometimes it is also known as 

Ripple Carry Adder (RCA). Generalized diagram of parallel 

adder is shown in figure 3. 

 

Figure 3: Parallel Adder (n=7 for SPFP and n=10 for 

DPFP)  

An n-bit parallel adder has one half adder and n-1full adders 

if the last carry bit required. But in 754 multiplier‟s 

exponent adder, last carry out does not required so we can 

use XOR Gate instead of using the last full adder. It not only 

reduces the area occupied by the circuit but also reduces the 

delay involved in calculation. For SPFP and DPFP 

multiplier‟s exponent adder, here we Simulate 8 bit and 11 

bit parallel adders respectively as show in figure 4. 

 

Figure 4: Modified Parallel Adder (n=7 for SPFP and 

n=10 for DPFP)  

Carry Skip Adder:- 

This adder gives the advantage of less delay over Ripple 

carry adder. It uses the logic of carry skip, i.e. any desired 

carry can skip any number of adder stages. Here carry skip 

logic circuitry uses two gates namely “and gate” and “or 

gate”. Due to this fact that carry need not to ripple through 

each stage. It gives improved delay parameter. It is also 

known as Carry bypass adder. Generalized figure of Carry 

Skip Adder is shown in figure 5. 

 

Figure 5: Carry Skip Adder 

Carry Select Adder:- 

Carry select adder uses multiplexer along with RCAs in 

which the carry is used as a select input to choose the correct 

output sum bits as well as carry bit. Due to this, it is called 

Carry select adder. In this adder  two RCAs are used to 

calculate the sum bits simultaneously for the same bits 

assuming two different  carry inputs i.e. „1‟  and „0‟. It is the 

responsibility of multiplexer to choose correct output bits 

out of the two, once the correct carry input is known to it. 

Multiplexer delay is included in this adder. Generalized 

figure of Carry select adder is shown in figure 3.9. Adders 

are the basic building blocks of most of the ALUs 

(Arithmetic logic units) used in Digital signal processing 

and various other applications. Many types of adders are 

available in today‟s scenario and many more are developing 

day by day. Half adder and Full adder are the two basic 

types of adders. Almost all other adders are made with the 

different arrangements of these two basic adders only. Half 

adder is used to add two bits and produce sum and carry bits 

whereas full adder can add three bits simultaneously and 

produces sum and carry bits. 

 

Figure 6: Carry Select Adder 

KS Adder: - Processing of the KSA adder is structured with 

pre-processing stage, carry generator and post processing 

stage. Each block is having individual responsibilities. First 

block of KSA is Pre- Processing that will generate and 

propagate the carry. Processing of carry will be done over 

the carry processing area and all the carry signal go through 

the post processing block. In the pre pre-processing stage we 

find the, generate and propagate signals from each inputs. 

Eventually, all the designing levels of digital system or IC‟s 

Packages depend on number of gates in a single chip that is 

also called bottom up approach. Modified KS adder can be 

reduced regarding the area or number of gates. 
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Figure 7: Block Diagram of Kogge Stone Adder 

III. PROPOSED DESIGN 

In this design we have reduced the resource utilization in 

terms of number of multipliers and registers in lieu of the 

completion time. This design is particularly useful where 

resources are limited and design can be compromised on 

basis of increased completion time. The basic working 

model for a 3 × 3 matrix-matrix multiplication is shown in 

figure 7 below. 

Considering the matrix – matrix multiplication of two n×n 

matrices, the calculation is performed using n number of 

multipliers, n number of registers and n-1 number of adders.  

2n cycles are required to perform the matrix multiplication 

operation. Each multiplier has two input ports: one each 

from matrix A and B. In each cycle, n numbers of 

multiplications are performed and the products are fed to the 

adder block to give a single element of the output matrix, C. 

The data flow to the multipliers are such that, 
thk multiplier 

is fed from 
thk  column of matrix A and 

thk row of matrix 

B, where 1 < k < n. At the 
thk multiplier, each element from 

matrix A is repeated for n consecutive cycles whereas the 

elements from matrix B are cycled back after n cycles. The 

partial products are then fed to the adder which computes 

the final result. 

For a better understanding of the process, let us consider the 

matrix multiplication for n = 3 (as shown in figure 1). In this 

case, 3 multipliers and 3 registers are used to calculate and 

store the partial products respectively. These partial products 

are then fed to the adder block to compute the final result. 

The first multiplier receives input from the first column of 

matrix A (ak1) and first row of matrix B (b1k), where. Each 

element of the matrix A at the first multiplier is repeated for 

3 cycles, such that the data flow can be represented as 

111111 aaa 212121 aaa 313131 aaa .Similarly, at the first 

multiplier, the elements of B are repeated after 3 cycles, 

such that the input data-flow will be 

131211 bbb 131211 bbb 131211 bbb .  

 

Figure 8: Proposed PPI – MO Design for n = 3 

The other two multipliers receive the component of A and B 

in the similar order as the first multiplier. After the 

multiplication, the partial products are fed to the adder 

which computes the elements of output matrix C in row 

major order given by 131211 ccc 232221 ccc 333231 ccc . So the 

entire matrix multiplication operation is performed in 
2n =9 

cycles. 

IEEE 754 Floating Point:- In IEEE754 standard floating 

point  representation, 8 bit Exponent  field in single 

precision floating point (SP FP) representation and 11 bit in 

double precision floating point (DP FP) representation  are 

need to add with another 8 bit exponent and 11 bit exponent 

respectively, in order to multiply floating point numbers 

represented in IEEE 754 standard as explained earlier. 

Ragini et al. [10] has used parallel adder for adding 

exponent bits in floating point multiplication algorithm. We 

proposed the use of 8-bit modified CSA with dual RCA and 

8-bit modified CSA with RCA and BEC for adding the 

exponent bits. We have found the improved area of 8-bit 

modified Carry select adder with RCA and BEC over the 8-

bit modified CSA with dual RCA.  

o Sign bit calculation 

To calculate the sign bit of the resultant product for SP FP 

and DP FP multiplier, the same strategy will work. We just 

need to XOR together the sign bits of both the operands. If 

the resultant bit is „1‟, then the final product will be a 

negative number. If the resultant bit is „0‟, then the final 

product will be a positive number. 

o Exponent bit calculation 
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Add the exponent bits of both the operands together, and 

then the bias value (127 for SPFP and 1023 for DPFP) is 

subtracted from the result of addition. This result may not be 

the exponent bits of the final product. After the significand 

multiplication, normalization has to be done for it. 

According to the normalized value, exponents need to be 

adjusted. The adjusted exponent will be the exponent bits of 

the final product.  

o Significand bit calculation 

Significand bits including the one hidden bit are need to be 

multiply, but the problem is the length of the operands. 

Number of bits of the operand will become 24 bits in case of 

SP FP representation and it will be 53 bits in case of DP FP 

representation, which will result the 48 bits and 106 bits 

product value respectively. In this paper we use the 

technique of break up the operands into different groups 

then multiply them. We get many product terms, add them 

together carefully by shifting them according to which part 

of one operand is multiplied by which part of the other 

operand. We have decomposed the significand bits of both 

the operands ain four groups. Multiply each group of one 

operand by each group of second operand. We get 16 

product terms. Then we add all of them together very 

carefully by shifting the term to the left  according to which 

groups of the operands are involved in the product term. 

Partition Multiplier:- 

Algorithm for partition method 

t1 : in  STD_LOGIC_VECTOR (7 downto 0); 

t2 : in  STD_LOGIC_VECTOR (7 downto 0); 

t3 : out  STD_LOGIC_VECTOR (15 downto 0)); 

h1<=t1(3 downto 0); 

h2<=t1(7 downto 4); 

h3<=t2(3 downto 0); 

h4<=t2(7 downto 4); 

su1<=h1*h3; 

su2<=h1*h4; 

su3<=h2*h3; 

su4<=h2*h4; 

ad1<=("00000000" & su1); 

ad2<=("0000" & su2 & "0000"); 

ad3<=("0000" & su3 & "0000"); 

ad4<=(su4 & "00000000"); 

t3<=ad1 + ad2 + ad3 + ad4; 

IV. SIMULATION RESULT 

All the designing and experiment regarding algorithm that 

we have mentioned in this paper is being developed on 

Xilinx 6.2i updated version. Xilinx 14.1i has couple of the 

striking features such as low memory requirement, fast 

debugging, and low cost. The latest release of ISETM 

(Integrated Software Environment) design tool provides the 

low memory requirement approximate 27 percentage low. 

ISE 6.2i that provides advanced tools like smart compile 

technology with better usage of their computing hardware 

provides faster timing closure and higher quality of results 

for a better time to designing solution. 

Table I: Comparison Result 

Structure Dimension Slice LUTs IOBs 
Delay 

(ns) 

Previous 

Design 

[1] 3×3 

112 164 81 15.517 

MM using 

PPI-MO 
93 154 74 15.058 

Previous 

Design 

[1] 4×4 

248 412 96 17.227 

MM using 

PPI-MO 
221 388 92 15.058 

 

V. CONCLUSION 

IEEE754 standardize two basic formats for representing 

floating point numbers namely, single precision floating 

point and double precision floating point. Floating point 

arithmetic has vast applications in many areas like robotics 

and DSP. Delay provided and area required by hardware are 

the two key factors which are need to be consider Here we 

present single precision floating point multiplier by using 

two different adders namely modified  CSA with dual RCA 

and modified CSA with RCA and BEC. Among all two 

adders, modified CSA with RCA and BEC is the least 

amount of Maximum combinational path delay (MCDP). 

Also, it takes least number of slices i.e. occupy least area 

among all two adders.   

REFERENCES 

[1] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, “A 

Simple Novel Floating Point Matrix Multiplier VLSI 

Architecture for Digital Image Compression Applications”, 

2nd International Conference on Inventive Communication 

and Computational Technologies (ICICCT 2018). 

[2] Chiou-Yng Lee, Pramod Kumar Meher, Chia-Chen Fan, and 

Shyan-Ming Yuan, “Low-Complexity Digit-Serial Multiplier 

Over G F(2m) Based on Efficient Toeplitz Block Toeplitz 

Matrix–Vector Product Decomposition”, IEEE Transactions 

on Very Large Scale Integration (VLSI) Systems 2016. 



  
 

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)                                           ISSN: 2349-4689 

Issue 174, Volume 74, Number 01, August 2020 

 

www.ijspr.com                                                                                                                                                                                   IJSPR | 40 

[3] K. Deergha Rao, Ch. Gangadhar and Praveen K Korrai, 

“FPGA Implementation of Complex Multiplier Using 

Minimum Delay Vedic Real Multiplier Architecture”, IEEE 

Uttar Pradesh Section International Conference on Electrical, 

Computer and Electronics Engineering (UPCON) Indian 

Institute of Technology (Banaras Hindu University) Varanasi, 

India, Dec 9-11, 2016. 

[4] Ms. S. V. Mogre and Mr. D. G. Bhalke “Implementation of 

High Speed Matrix Multiplier using Vedic Mathematics on 

FPGA”, 2015 International Conference on Computing, 

Communication Control and Automation. 

[5] Pramod Kumar Meher, “Hardware-Efficient Systolization of 

DA-Based Calculation of Finite Digital Convolution,” IEEE 

Transaction on Circuits and Systems, vol. 53, no. 8, pp. 707 - 

711, 2006 

[6] Ju-Wook Jang, Seonil B. Choi, and Viktor K. Prasanna, 

“Energy- and Time-Efficient Matrix Multiplication on 

FPGAs”, IEEE Transaction on Very Large Scale Integration 

(VLSI) Systems, vol. 13, no. 11, pp. 1305 – 1319, 2005 

[7] S. Tugsinavisut, S. Jirayucharoensak and P. A. Beerelt, “An 

Asynchronous Pipeline Comparisons with Applications to 

DCT Matrix-vector Multiplication,” in Proceedings of the 

2003 International Symposium on Circuits and 

Systems(ISCAS), vol. 5, pp. V-361 - V-364, 2003. 

[8] Amira, A. Bouridane, and P. Milligan, “Accelerating matrix 

product on reconfigurable hardware for signal processing,” in 

Proceedings 11th International Conference on Field-

Programmable Logic and Its Applications (FPL), pp. 101 – 

111, 2001. 

[9] O. Mencer, M. Morf, and M. J. Flynn, “PAM-Blox: High 

performance FPGA design for adaptive computing,” in Field 

Programmable Custom Computing Machines (FCCM), pp. 

167 – 174, 1998. 

[10] Pramod Kumar Meher, “Hardware-Efficient Systemization of 

DA-Based Calculation of Finite Digital Convolution,” IEEE 

Transaction on Circuits and Systems, vol. 53, no. 8, pp. 707 - 

711, 2006 

[11] Ju-Wook Jang, Seonil B. Choi, and Viktor K. Prasanna,” 

Energy- and Time-Efficient Matrix Multiplication on FPGAs”, 

IEEE Transaction on Very Large Scale Integration (VLSI) 

Systems, vol. 13, no. 11, pp. 1305 – 1319, 2005. 

[12] Campbell, Scott J. and Sunil P.Khatri. “Resource and delay 

efficient matrix multiplication using newer FPGA devices” 

ACM Great Lakes Symposium on VLSI (2006). 

[13] C Paidimarri.A, A.Cervero, P.Brisk and P.Ienne. “FPGA 

Implementation of a single – precision floating-point 

multiply-accumulator with singlie-cycle accumulation,” 

proceedings of the IEEE symposium on Field Programmable 

Custom Computing Machines, April 5-7,2009 Karchi, 

Pakistan, pp-267-270. 

 

 

 

 


