INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

ISSN: 2349-4689

Priority Based Scrubbing For Multi-Bit Upsets On
SRAM FPGAs

Aiswariya A.P., Nithin Joe

ECE Department,Nehru College of Engineering And Research Centre, Pampady, Thrissur, Kerala

Abstract- The SRAM-based field-programmable gate array
(FPGA) is extremely susceptible t0 single event upsets (SEUs)
on configuration memory which can lead to soft error and
malfunction of the circuit. Facing the ever-growing number of
configuration bits in modern FPGAs, traditional scrubbing is
getting harder 10 find errors in time, resulting in mismatching
between the SEU sensitivity and scrubbing performance. The
proposed method uses a hierarchical scrubbing based on
priority technique that makes full use of the single-bit and
multi-bit sensitivity based on the adaptive mean time to detect
(MTTD) for each frame. The single-bit upset is performed
using duplication with comparison and multi-bit upset by using
multi dimensional parity bits. It distinguishes the configuration
frames with multi-priority and wuses different scrubbing
methods for different priorities. Also, a model has been built
for solving the MTTD allocating problem and enabling an
effective scrubbing when SEU and MBU occur. Moreover, the
corresponding hardware architecture is supported and the
fault injection-based evaluation on a Xilinx FPGA is done.
The result shows that it can improve mean upsets to failure,
which is proportional to the mean time to failure (MTTF)
improvement.

Index Terms- Field-programmable gate array (FPGA),
hierarchical scrubbing, mean time to detect (MTTD)allocating,
multifrequency scrubbing, rapid scrubbing, single event upset
(SEU)and MBUs.

. INTRODUCTION

SRAM-BASED field-programmable gate arrays (FPGAS)
have been widely used especially in aerospace applica-
tions in the past few years. The reason is that SRAM-
based FPGAs with high logic density can be
reconfigurable, which makes the applications more
flexible. However, the aeronautical environment contains
a large number of high-energy radiation particles. The
radiation particle flux increases with altitude. For
example, the neutron flux at 2000 m is five times higher
than that at sea level, and only 1% of neutrons created by
cosmic rays reach the earth’s surface [1]. This may cause
the SRAM signal in the configuration memory to change

[2].
These errors, which may lead to system failure until being
reprogrammed, are called soft errors.Single event upset

(SEU) is a kind of typical soft error, specifically
representing the data flipping of an SRAM cell.

For reducing the impact of the SEU, there are three
mainkindof =~ methods including manufacturing-,

WWW.ijspr.com

redundancy-, andscrubbing-based methods.
Manufacturing-based methods areoften expensive and
cannot eliminate SEU, whereas they can reduce the SEU
sensitivity of the circuits. Triple modular redundancy
(TMR) is a typical redundancy-based method for spatial
redundancy, working with signal voting by copying
hardware to mask errors [3]-[6]. Although
TMRisuseful,its large area overhead limits the
applications in general. Dual-modularredundancy
[7].[8]isanother redundancy-based method to reduce area
overhead. However, redundancy-based methods
cannotrepair SEU.Thescrubbing-based methods just
provide an available method to repair the SEU and avoid
the accumulation of SEU.

In the FPGA configuration layer, the scrubbing-based
method [9] is used to protect circuits from SEU. A
common circuit is used tocheck and correct the SEU that
happened in the configuration memory. The traditional
blind scrubbing method periodically overwrites all the
configuration memories to correct the SEU. This method
needs a gold memory to store the bitstream of the whole
configuration. Another scrubbing method is used to
periodically read back the bit stream [10] and to detect
theSEUbyencoding [11],[12]like ECC.In Stoddard et al.
[13], both were combined based on theZynq device with
ARM core. However, for FPGAs without ARM core, the
detection of SEU it stilldifficult.

To deal with this problem, researchers focus more on the
connection between the scrubbing methods and test
circuits. One kind of optimization for scrubbing is called
on-demand scrubbing [14]. This method obtains some
signals compared with original circuits and their copies
[15]. Through these signals, the shifted scrubbing method
[16]-[18] can narrow down the range of SEU position and
respond to fix errors within a short time. What is more,
the rapidscrubbingmethod [19] could locate the SEU from
the application layer to the configuration layer to
minimize the repaired time. Except on-demand scrubbing,
another optimizationisdone to improve configuration
scrubbing rather than using the signals from original
circuits. A flexible design framework for hardware
scrubber is described in Herrera-Alzu and Lopez- Vallejo
[20]. Context-aware resource placement strategy is used in
Fouad et al. [21] to minimize the configuration frames
that need to be protected. Based on the closed resource

1ISPR | 24

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

arrangements, the selective read backmethod [22] reduces

the scrubbingframes toenhance theefficiency
ofthedetection.
With further research, researchers distinguish the

configuration frames to used frames and unused frames.
But even if two different frames belong to used frames,
their SEU sensitivity is different [23]. In this article, we
propose a hierarchical scrubbing technique to distinguish
the frames with more priorities and decide the suitable
scrubbing method for each configuration frame to make
full use of the SEU sensitivity. The main contributions of
this work can be summarized as follows.

1) A hierarchical
proposed.This

scrubbing technique s

technique distinguishes the configuration frames with four
priorities according to the SEU sensitivity and then uses
different scrubbing methods for different priorities to
make full use of the SEU sensitivity. As for the first
priority, the hierarchical scrubbing uses the rapid
scrubbing method. As for the second and third priorities,
the hierarchical scrubbing adjusts the scrubbing rate to
suit SEU sensitivity. The fourth priority is unused frames,
which would beignored.

A multifrequency scrubbing method is proposed tomax-
with mean time to failure (MTTF) and positively related
to failures in time (FIT). If the soft error effect without
scrubbing is S, the one configuration bit EMR under
scrubbing can be expressed as follows:

DMTTD—MTTM

AR AR xS MTTD>MTTM

2) imize scrubbing performance for the second and
third priorities with nearly no extra resource overhead.

This EMR=MTTD -0, MTTD <MTTM.

AMTTM
MAX = mmmmmmmmm oo e

Essentiali Unused
MTTD| T

SUsed 1 Frames

T Frames |
1

Prioritized
Essential
Frames

\/ - Critieal
— Frumes !

I
Configuration frames

12 3 4 5 6 7 8 9 1011 «--
Fig. 1. MTTM and MTTD of configuration frames.

method adjusts the scrubbing rate for each configuration
frame to make full use of the SEU sensitivity. Also, a
model has been built for solving the optimization
problem. It consists of three subproblems, and the multi-
frequency scrubbing method provides optimal solutions
for every problem.

WWW.ijspr.com

\/

ISSN: 2349-4689

3) The corresponding hardware architecture is
supported, and its evaluation based on a random fault
injection test has been done on the Xilinx Kintex-7 FPGA
device. Onthebasisofthetest results,thehierarchical
scrubbing technique canimprove mean upsets tofailure
from

1.56 to 146.93 when comparing with the conven-

tional traversal scrubbing method provided by the Xilinx
SEM.

The remainder of this article is organized as follows.

Section Il describes the evaluation of SEU sensitivity.
Section Il introduces the proposed hierarchical scrubbing
technique in detail. The multifrequency scrubbing method
is introduced in Section IV. Then, Section V explores the
hardware design of the hierarchical scrubbing. Section VI
shows the setup of the experiment and the results of the
random fault injection test. Finally, Section VIl concludes
this article.

Il. SENSITIVITY EVALUATION
A. Quantitative Model

A quantitative analysis model is established by Asadi and
Tahoori [24] for analyzing the scrubbing technology. The
model indicates that the scrubbing effect is primarily
deter- mined by mean time to manifest (MTTM) and
mean time to detect (MTTD). MTTM refers to the average
time from the SEU occurrence to the system failure, while
MTTD represents the average time from the SEU
occurrence to the discovery of the SEU position on the
FPGA configuration layer. In this model, the soft error
effect due to scrubbing is evaluated using error
manifestation rate (EMR). EMR isnegatively correlated.

In addition, the EMR of the whole circuit can be obtained
by accumulating the EMR of all configuration bits.

In general, MTTM s the circuit characteristic, whereas
MTTD is determined by scrubbing, thus we obtain the fol-
lowing empirical equation:

MTTD

t % Ny. (2)

Here, t represents the time to check one frame, which is a
fixed value. N represents the number of frames that need
to be checked. The configuration frame is the smallest unit
of the FPGA scrubbing technique, which consists of many
configuration bits. All the operations such as reading and
writingtheconfigurationdataarebased onthewhole frame.

B. Analysis andPriority

The conventional traversal scrubbing method makes all
the configuration frames to have the same MTTD, but not
all of the configuration frames have their MTTD adapted
to their MTTM. It can be seen from Fig. 1 that some
configuration frames have a smaller MTTM and some

IJSPR | 25

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

have a larger MTTM. Based on (1), consider a frame with
a large MTTM. Its acceptable MTTD is large, so it is not
necessary to detect this frame so frequently. The reason is
that the improvement of this configuration bit from
MTTD finally provides a little contribution to the system
EMR. Configuration frames with smaller MTTM require a
smaller MTTD to reduce EMR so thatthesystem
EMRwouldbesmaller.

Therefore, this article proposes a hierarchical scrubbing
technique that can make full use of the SEU sensitivity of
different configuration frames. This method, through the
MTTM, allows to decide the priority of the configuration
frames andthen wuses twoscrubbingmodes tomake
theMTTD more suitable for MTTM, just as the arrows
shown in Fig. 1. The difference between the hierarchical
scrubbing and other scrubbing methods is that hierarchical
scrubbing coulddeal with each frame on its merits. For
each frame, we try to find suitable protection with low
overhead and make full use of the sensitivity.

Design Flow Critical Technology

User Design

/ Muti-frequency ™

@ ! Scrubbing
1
/ 1
Sensitivity Measurement Fault Injection /| / Rule of Best
!/ Sequence
| —
1
1
1

5 . o

S . Priority
Sensitivity for Frames / Partition /

L) Rapid
Application Protection St s

1
I
I
1
7l
&
I
1
1
% :
1
Configuration Protection i A4
i : Frequency
Frequency Calculation o Algorithm
I
Sequence Generating i SCQUEFUCE
1/ Algorithm
L /
N
O A4

Scrubber Hardware Scrubbing Address Generator

@ ~

Design Implementation <

Fig. 2. Procedure of hierarchical scrubbing technique.

As shown in Fig. 1, all the frames are divided into four
priorities. The first priority includes the configuration
frames which are most sensitive to the SEU. To protect
these frames, we use duplication with comparison (DWC)
to locate the position of the SEU and make a rapid
scrubbing. The second prioritycontainstheframes
whicharesensitive enough butnot so sensitive as the first
priority. The third priority consists of the frames which
indicate that the system failure only happens in a few
cases when SEU takes place. For these frames, the MTTD
of the second and third priorities is adjusted to let their
MTTD matches their MTTM. The rest frames, also called
unused frames, belong to the fourthpriority.

WWW.ijspr.com

ISSN: 2349-4689

. HIERARCHICAL SCRUBBING TECHNIQUE

A. Overview

The scrubbing methods used in hierarchical scrubbing
pro- tect different sensitive configuration frames from two
per- spectives, which adopted the FPGA application layer
and the configuration layer. The configuration frames with
high sensitivity and small MTTM would be protected
through the application layer by the rapid scrubbing
method [19]. For the remaining configuration frames, the
proposed multifrequency scrubbing method will be
adopted. By the end, the MTTDs of the configuration
frames would match their MTTM. Briefly, shown in Fig.
2, the proposed hierarchical scrubbing technique requires
a total of five steps as shown in the following:

1) Measure the SEU sensitivity of configuration bits
intheimplemented circuit through fault injection [25]-
[28].

2) Divide the configuration frames into different
priori- ties according to the sensitivity. For priority
partition, the SEU sensitivity of the configuration bits
should be added to get the SEU sensitivity of the
configuration frames because the frame is the smallest
unit for oper- ations.

3) Add DWC redundancy detection to the circuit
modules corresponding to the configuration frames with
high sensitivity. Then, the system can make a rapid
scrubbing to these configuration frames by locating the
position of the SEU through the DWCdetection.

4) Balance the MTTD of rest configuration frames
with their sensitivity by adjusting the scrubbing rates. In
this way, we optimize the scrubbing frequency of each
frame to minimize the system EMR based on the multifre-
quency scrubbing method. There are three steps to ana-
lyze the scrubbing. The first step is to analyze the best
distributionofconfigurationframes withfixed frequency in
one cycle. The next step is to calculate the frequency of
each frame to get the smallest EMR. Finally, generate the
scrubbing sequence used in real-time according to the
frequency of configurationframes.

5) Store the information obtained by two scrubbing
meth- ods to the scrubber storage structure inhardware.

The hierarchical scrubbing technique will normally make
multifrequency scrubbing on all used frames according to
different frequencies. When the DWC redundancy finds
an error, the scrubber changes to the rapid scrubbing mode
and makes scrubbing detection on the frame with position-
aware DWC to repair the SEU as soon as possible. By
hierarchical scrubbing,theMTTDcanbetter
adapttotherespective MTTM of the frames, thereby
reducing the system EMR.

1JSPR | 26

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

B. Sensitivity Measurement and PriorityPartition

To measure the MTTM of the configuration bits, an auto-
matic soft error sensitivity measurement platform has
been established based onthefaultinjection
method.First,copytwo original user circuits. One is a
standard circuit and the other is the test circuit. Next,
inject the SEU to the specific bit in theconfigurationframe
corresponding tothetest circuit.Then, apply the same
excitation to the two circuits and compare the circuit
output. The test circuit outputs a system error when the
test circuit output is different from the standard circuit.
The test platform would record the MTTM time between
the fault injection of the corresponding bit and the
observed system error. After this, the test platform would
repair the fault and select the next bit to inject SEU.
Finally, repeat the operations of fault injection, output
comparison, and MTTM recording just as shown in Fig. 3.
For each SEU fault, the platform would test in a fixed
period. If no error is observed during the period, it would
change tothe next SEU.

Due to the configuration structure limitation of FPGA, the
configuration bit MTTM should be aggregated to the con-
figuration frame sensitivity. There are several ways to
aggre- gate the MTTM. One is to use the maximum bit
MTTM to represent theframe sensitivity. Thiswouldresult
ininsufficient scrubbing performance when a large number
ofconfiguration

| Initializing |<—(Starting)
Y

Ves
All injected? &

No Y
| Injecting next SEU | (Ending)

| Detecting circuit output |-—

| Checking golden output |

:

Yes
[Recording MTTM |

Y

—| Repairing SEU |

Fig. 3. Procedure of sensitivity measurement.

bits with small MTTM are masked which cannot be
repaired in time. The other way is to use the minimum bit
MTTM to calculate the frame EMR. However, taking the
minimum bit MTTM could result in excessive scrubbing
performance and itisawaste
oftheconfigurationportbandwidth.

In this article, we use the MTTMs of all the configuration
bitstocalculate theEMRs,andthen wesumthem uptogetthe
total EMR for a frame. The method for obtaining the
frame EMR conforms to the additivity of FIT and it could
better reflect the comprehensive situation in the whole

WWW.ijspr.com

ISSN: 2349-4689

configuration frame.

Mainly, the configuration frames could be divided into
four priorities. The frames with high sensitivity and small
MTTM are the first priority, which could be called critical
frames. The second priority is called prioritized essential
frames. The MTTM of prioritized essential frames is
smaller than its MTTD, and the scrubbing rate would be
increased to reduce its MTTD. The third priority is
denoted as essential frames or used frames. Except for the
prioritized essential frames, the rest frames in essential
frames would decrease its scrubbing rate to increase the
scrubbing rate of prioritized essential frames.Other frames
arecalled unused frames,which would be ignored by
ourscrubbing.

C. RapidScrubbing

1) Scrubbing Technique: The rapid scrubbing method
based onDWCenables aneffective scrubbingasearly
aspossible by accurate position information when SEU
occurs just as shown in Fig. 4. The circuit shown in Fig.
4(a) is the original circuit without the rapid scrubbing
protection. Assume it could be divided into four
functional modules, i.e., A, B, C, and D, where modules A
and B are more critical to circuit function and thus get
protected by DWC. Once the comparator of either module
AorBdetects anerror asshowninFig.4(b),itsoutput will be
forwarded to the configuration frame address generator in
the scrubber, which immediately translates its work mode
to a rapid scrubbing mode. At this time, the scrubber
would translate the error signal to the configuration frame
address using the position information obtained from the
analysis of theFPGAconfigurationstructure bytheerror
locatingmethod.

— Module B » Module C » ModuleD —»

SEU
FPGA %
Module A }—b

P T —————————
/ ‘ (|
I ’ Module A | > Module B } =| Module C }—»
|
I \-’
: Copy A Copy B

st M nl
| |

Comparator Comparator
\ <«
~]] -
=
A ¥ = 8
8 — &
Frame Address Generator E S w
Z2 208 =
v £E 8 =
8 < e
| rRaM +— Conmollor |et— s 2
1 Scrubber
FPGA |
(b)

Fig. 4. SEU occurrence in different situations. (a) SEU
occurrence of original circuit. (b) SEU occurrence of
circuit under rapid scrubbing.

1ISPR | 27

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

" | COLUMN

£ B 5 [][] 2 - 3

Emmmml] .. —
SSssscogio
EmEmmll=s.. = u

Sy e [-
[] I:IDDI:IC] ROW : s
:]I:II:II:II:IDDI:I‘D ©
EmEmml] (m .. = .EE.
SmSosnEe-o ‘
EmmmmEl]m..= O ERNE
Constrain modulel in user dcisign to a specified position through the xdce file.
[Jvo EEdcax [0BrRaM [pse [cLB

Fig. 5. Resource map of user circuit in FPGA.

Then, the scrubber will detect and correct the
configuration frames corresponding to the error module.

The position-aware DWC enables rapid scrubbing and
makes it different from other scrubbing techniques, which
search all the frames or the essential frames. They have to
read many frames back for error checking which may
result in much longer MTTD. Instead, rapid scrubbing
reacts promptly on error detection with DWC and can
locate the error within a limited number of frames that
improve theMTTD.

Error Locating Method: Generally, it is difficult to locate
a fault frame in FPGA configuration memory because of
the agnostic of how the application circuit relates to
configuration memory. As shown in Fig. 5, the
configuration frame address consists of block type,
top/bottom address, row address,
columnaddress,andminoraddress.

1 2 3 4 5 6 7 8
(a)
EEEEEEEE -
2 3 4 5 6 7 8

(b)
‘-‘- "

‘4—““])—»(

Fig. 6. Influence of different scrubbing frame arrangement
under the same scrubbingfrequency. (a)Frame arrangement
withevenly distributed.(b)Frame arrangement without
evenly distributed. (¢) Typical frame arrangement for Z1

Time

_v

frame.

Acolumnrepresents a and the distance between adjacent
Z,is four frames. If SEU occurs in Z;at the time of
detecting the 1/2/3/4/5/6/7/8 frame, the time to find the

WWW.ijspr.com

»
|

Time

ISSN: 2349-4689

SEU is 1/4/3/2/1/4/3/2 frames correspondingly. The
average MTTD is 2.5 frames for Z;. However, as shown
in Fig. 6(b), with the same scrubbing frequency, the frame
arrangement in Fig. 6(b) is notevenly distributed over
time. The average MTTD is 3.625frames for Z;.
Therefore, under a fixed frequency, the different
arrangement Of the scrubbing sequence has a greater
impact on the MTTD. To minimize the MTTD, it is
necessary to find the best arrangement of thescrubbing
sequence.

Take Z;, for example, to findthe arrangement condition
ofthe minimum MTTD under a fixed frequency. The
variables are described asfollows as shown in Fig. 6(c).

1) The distance between two adjacent frames in
thescrubbing sequence is 1. The distance increased by
oneforseries of identical resources, such as CLB Slice,
1/0, CLK, BRAM control logic, and DSP. If a logic circuit
is placed in a CLB slice, the corresponding configuration
data is placed in the frame with the same column address.
Then, we can get the frame address of each circuit module
by automatically analyzing the position of themodules.

The error locating method can be divided into four steps.
First, read the synthesized circuit, analyze how the circuit
modules are connected, and learn how many resources are
needed for each module. Second, use the Xilinx design
con- straint file (.xdc) to constrain the layout of each
circuit module to a specified position as Fig. 5, and then
redo the synthesis and implementation. Third, update the
constraint file and repeat step 2untilsuccessful
implementation.Finally,interpret the position of the
resources occupied by modules, and obtain the frame
address based on the resource arrangement.

IV. MULTIFREQUENCY SCRUBBING

The multifrequency scrubbing method is to balance
theMTTD among the remaining configuration frames to
degrade the system EMR. Here is the scrubbing problem
description.|t is assumed that the scrubber needs to protect
n different frames, which are respectively called Z,,
Zy,..., Zy. If Zjisdetected for F;times during a scrubbing
cycle, the scrubbingfrequency between n frames is called
FF,... F,. Thennframes are arranged to generate a
frame sequence in whicheach additional frame in between.

2) If there are a;frames between the i thZ,andthe
(i 1)thZ, the distance is a;1.

3) ar1 means that there are agpq frames between the

(F1)th Z,and the 1stZ;because the sequence repeats after
a whole scrubbingcycle.

4) The sum of the frames ina whole scrubbing cycle
ism.AsshowninFig.6(c),there isatotalofa; 1cases
when SEU occurs between the i thZ;andthe(i 1)thZ;.
Todetect theSEU,thenumber of frames areseparately

1JSPR | 28

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

1,2,...,8 1.The sum
SiiS
Si:[1+2+' . +(ai+1)].

The average frames detected for SEU in Zare the
quotient between Sum of S;for all Z,and the number of all
cases m. m is equal to the number of the frames in a
scrubbing cycle. Therefore, the MTTD, for Z,could be
obtained by multiplying the average frames and one frame
detecting time t

|I.
Sum = ZI: 5

(4)
i=l
m= [l +1)+la+01+---+{ag +13] (5)
5
MTTD; = —— x 1. (6)

m

Here, t represents the fixed time to check a configuration
frame just as shown in (2). Also, m is a constant value
under a fixed frequency. Therefore, obtaining the
minimum of MTTD is the same as minimizing the Sum of
Sifor all cases. According to Cauchy inequality, the
minimum of SumisZ;appears Fjtimes. This sequence
represents the order ofthe frames detected by the scrubber
over time. When the hardware scrubber is working, it
reads the frame address from the sequence in turn and
writes the correct configuration
back when SEU is detected.

Fi Fi
DS =201 +2+ +(a+ 1)
i=l i=1

ll.

kZH]—FH, + 1} = {a; + 1]

i=l

frame

Sum

Iwd | =

It | =

Fi Fi
x [Zm, + 1+ Zm, + 1]3}

m-
W — (7
(F

T

It | =

A. Optimal Scrubbing Frame Arrangement

The first problem is the optimal scrubbing frame arrange-
ment under a fixed frequency. As shown in Fig. 6(a), the
fre-

quency of Zy, Z,, Z3, Z, in a scrubbing cycleis2:2:2: 2

According to the inequality, the minimum of MTTD
requires the distance between the same frames in the
scrubbing sequence to be equal, which means the frames
are evenly distributed in the sequence. This conclusion
could be applied to Z,, Z3, and all frames. Therefore, the
optimal scrubbing sequence should satisfy the condition:
all frames are evenly distributed in the scrubbing
sequence. This will enable us to minimize the MTTD of
all configuration frames under a fixed frequency.

Also, the equation means that if the scrubbing sequence is

WWW.ijspr.com

®)

ISSN: 2349-4689

evenly distributed, the optimal frame MTTD is decided
only by the scrubbing frequency. Therefore, the scrubbing
problem could be divided into two parts. The first part is
to calculate the scrubbing frequency to minimize the
overall system EMR and the second part is to generate the
evenly distributed scrubbing sequence, which is
corresponding to Sections IV-C and IV-D.

A.Optimal Scrubbing Frequency Calculation

Through the abovementioned, we have aggregated the
con- figuration bits MTTM to obtain the frame EMR. Just
as described before, the scrubber needs to protect n differ-
ent frames, which are respectively called Z4, Z,, ..., Z,.

Each frame corresponds to an equivalent MTTM denoted
as My, My, ..., M. The problem is to calculate the
scrubbing frequency F{F,... Fhaccording to the EMR and
mini- mized MTTD formulas for minimizing the overall
EMR. It is assumed that all frames are evenly distributed
in the scrubbing sequence.

To minimize system EMR, we propose a gradual replace-
ment algorithm for solving the optimal frequency
calculation problem. In the scrubbing

sequence, if a frame is replaced with another, the
frequency of the replaced frame is reduced and the
frequency of the replacing frame is increased. The
replacing frame would reduce the frame EMR due to the
increased scrubbing frequency while the replaced frame
would increase the frame EMR. To obtain a reduction in
system EMR, the reduced EMR should be more than the
increased EMR. This is the basic principle of the proposed
gradual replacement algorithm.

The gradual replacement algorithm has three basic steps to
obtain a reduction in system EMR. The first step is to
calculate the initial EMR of each frame. Based on the
same frequency and obtained MTTM in the previous
procedure, the EMR of each frame is calculated. The
second step is to calculate the EMR effect of changing the
scrubbing frequency. Each time the scrubbing frequency
is changed, the replaced frame will be detected one less
time in @ whole scrubbing cycle. Therefore, the increase in
EMR for the replaced frame would be calculated.
Similarly, the replacing frame will be detected one more
time in the whole scrubbing cycle, and the EMR reduced
for replacing the frame would be calculated. The third step
is to replace the frame with the least EMR reduced by the
frame with the most EMR increased, which improves the
overall EMR most.

Based on the frequency after replacement, repeat the
operation with updating effect and frame replacement
until the maximum EMR reduced is smaller than the
minimum EMR increased. By the time, it is no longer
possible to reduce the system EMR and the scrubbing
frequency is optimal.

1JSPR | 29

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

The MTTM of the frames is the minimal MTTM of the
configuration bits in the frame. The original MTTD
depends on the scale of the circuits. in which the
improved MTTD is well matched to the frames MTTM.
This would help to improve the system EMR at all.

B. Scrubbing Sequence Generation

According to the optimal scrubbing frame arrangement,
the more evenly frames are distributed in the scrubbing
sequence, the better the system reliability is. However, the
evenly distributed sequence may not exist because some
scrubbing frequency makes it impossible. In this article,
we proposed an algorithm to generate the scrubbing
sequence aredistributed asevenly
aspossible.

where allframes

Similarly, the scrubber needs to protect n different frames,
which are, respectively, called Z{, Z5, ... , Z,. Each
frame corresponds to the scrubbing frequency of F.F,..:
Fo. AccordingtotheEMRformula,generate
ascrubbingsequence for minimizing the overall system
EMR. It is best that all frames are evenly distributed in the
scrubbing sequence. There is another way to express the
sequence generation problem: Every time, the address
generator just selects one frame. It is required to distribute
as evenly as possible in the sequence for all the frames
based on the scrubbingfrequency.

This problem is similar to the load balancing problem.
The purpose is to issue multiple requests from the users
evenly to each computing resource and improve the
utilization [29]. The strict priority (SP) algorithm divides
the server queues into SP levels and arranges them from
high to low like Fig. 8(a). Only after the highest priority,
the next highest priority is arranged [30]. As shown in Fig.
8(b), round-robin (RR) algorithm sets the same priority
for all queues and selects the servers in turn [31]. The
conventional traversal scrubbing method is just like the
RR algorithm in scrubbing sequence generation. In
addition, the detecting frames include allused frames
andunused frames intheconventional traversal scrubbing
method while the selective readback scrubbing and
multifrequency scrubbing just include used frames.
Weighted round robin (WRR) is improved on the RR
algorithm. It can better allocate the servers according to
the weight of each server. For those servers with high
weight, WRR provides more chances to be selected. At
the same time, theservers with low weight are possible to
be selected [32], as shown in Fig. 8(c). Based on WRR
and the optimal scrubbing frequency, we propose the
minimized distance algorithm to generate a
multifrequency scrubbingsequence:

1) Initialize Weight and distance for each frame.
Thetotallength of the scrubbing sequence is m, and m is
the sum of the scrubbing frequency F;. i represents the
frame number from 1 to n while n represents the total

WWW.ijspr.com

ISSN: 2349-4689

number of frames included in the user circuit. Then, the
parameter Weight of Z;jis initialized to m/F;, which
represents the average distance between the two Z;in the
scrubbing sequence. The distance variable of Z;is
initialized to 0. The signal bit variable is initialized to 0.
Signalj indicates whether the firstoccurrence of Z;in the

scrubbing sequence is found. If not found, set Signalj to 0,
else set Signali to 1.

Framel
[-'mm-:lh‘ | [

3 P —_— (4 4|3 H|]|2]]2 1 1
['I':I.[]'IL".17 U |_| S S R ‘
Frame4
]'Emlul\
Framel — & | 1]
Framed — RR —= |4 (3|2 1 | a3 - 2

Framed /l

Framel \
Frame2 -~ ! — i .
|\ WRR j— a0 2] (1] 3]0 (2]]

Sequence
(a)

Sequence

{h)

F.'mrm:}/'
Framed

Fig. 8. Algorithms for load balancing problem. (a) Output
of SP algorithm.

Sequence
1)

(b) Output of RR algorithm. (c) Output of WRR
algorithm.

2) Compare the distance of all frames to find the Z ;with
the smallest distance. If there is more than one frame
having the minimum distance, select the frame with the
smaller W;. If there is still more than one frame having the
minimum of W;, select the frame with the smaller frame
address. Then, Z jis the next detected frame selected by
thescrubber.

3) If the Z jis selected for the first time, set Signal j to 1,
indicating that the frame has been selected for the first
time in the scrubbing sequence. In addition, add the
distance of Z jwith its W;.

V. Diagonal
Detection

Hamming Based Multi-Bit Error

For example, message of 32 bits is accounted in the
proposed method. The message is represented in the form
m X n matrix. The grouping of the message bits is depicted
in Fig.9. The encoder generates the hamming bits and the
hamming bits are obtained by grouping the message bits
and the hamming bits are calculated with the help of
hamming code. The message bits are patterned as shown
in Fig. 11. Eight diagonals are considered in this Diagonal
Hamming method and each diagonal consists of 4
message bits.

Message bits are grouped as shown in the Fig. 12 in the
specified directions.

1JSPR | 30

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

m3[7] | m3[6] | m3[5] | mi[4] | m3[3] | m3[2] | m3[1] | en3{0)

m2[7] | m2[§] | m2[5] | m2[4] | m2[3] | m2f2] | m2[1] | en2{0]

ml[7] | mi[8] | ml[5] | mi[4] | m1[3] | m1[2] | mi[L] | =cd[0]

ml[7] | m0[8] | m0[3] | 4] | ®0[3] | mO[2] | mO[L] | =al{0]

Fig9. 32-bit message organization (C=8 and R=4)

The first diagonal consists of m3[7], m3[5], m2[6], m1[7],
the second diagonal has m3[6], m2[7], mO[1], m1[0], the
third diagonal has mO[0], mO[2], m1[1], m2[0], the fourth
diagonal has m3[4], m2[5], m1[6], mO[7], the fifth
diagonal has m3[3], m2[4], m1[5], mO[6], the sixth
diagonal has m3[2], m2[3], m1[4], mO[5], the seventh
diagonal has m3[1], m2[2], m1[3], mO[4] and the eight
diagonal hasm3[0], m2[1], m1[2], mO[3]. Each one of the
diagonals has four message bits. For the respective
groups, the hamming bits are calculated as shown in Fig.
10. The hamming bits are shown as R1, R2, R3, R4, R5,
R6, R7, R8 arrays and these arrays consist of 3 bits.

The hamming bits are calculated as given in equations (1)-

For the first row:

R1[1] = m1[7] ® m2[6] & m3[7]; (1)
R1[2] = m1[7] ® m3[5] ® m3[7]; (2)
R1[3] = m2[6] ® m3[5] ® m3[7]; (3)
For the second row:

R2[1] = m1[0] & mO[1] & m3[6]; (4)
R2[2] = m1[0] & m2[7] & m3[6]; (5)
R2[3] = mO[1] & m2[7] & m3[6]; (6)
For the third row:

R3[1] = m2[0] & m1[1] & mO[0]; (7)
R3[2] = m2[0] & m0[2] & mO[0]; (8)
R3[3] = m1[1] & m0[2] & mO[0]; (9)
For the fourth row:

R4[1] = mO[7] ® m1[6] & m3[4]; (10)
R4[2] = mO[7] ® m2[5] & m3[4]; (11)
R4[3] = m1[6] & m2[5] & m3[4]; (12)
For the fifth row:

R5[1] = mO[6] @ m1[5] & m3[3]; (13)
R5[2] = mO[6] @ m2[4] & m3[3]; (14)
R5[3] = m1[5] @ m2[4] & m3[3]; (15)
For the sixth row:

WWW.ijspr.com

ISSN: 2349-4689

R6[1] = mO[5] @ m1[4] @ m3[2]; (16)
R6[2] = m0[5] @ m2[3] & m3[2]; (17)
R6[3] = m1[4] @ m2[3] & m3[2]; (18)
For the seventh row:

R7[1] = mO[4] & m1[3] & m3[1]; (19)
R7[2] = m0[4] & m2[2] & m3[1]; (20)
R7[3] = m1[3] ® m2[2] & m3[1]; (21)
For the eight row:

R8[1] = m0[3] & m1[2] & m3[0]; (22)
R8[2] = m0[3] @ m2[1] & m3[0]; (23)
R8[3] = m1[2] ® m2[1] & m3[0]; (24)

In the encoder, the hamming bits are calculated for
message. We get 24 hamming bits in total for 32-bit
message.

Crifical Scrubbing PI’iDI‘iﬁle; And Essential
rames

Priority . .
Measaren T e Mol Frequency Scrubbing
Measurement of [— | Partition [fMulti Frequency Scrubbing

Frames 3D Parity
Error Vector Generation

Frequency Analyzer

Configuration Frame
Correction

Fig10 Block diagram for error detection in MBUS

Multi Bit Error Correction

The message bits which are encoded and kept in memory
as a matrix as shown in Fig. 10, and are given as input to
the decoder. The decoder now segregates message and
hamming bits and it recalculates the hamming bits and
evaluates syndromebits.

The syndrome bits are evaluated using the equations given
(25)-(48) :

For first row

S1[1] = R1[1] & m1[7] & m2[6] & m3[7]; (25)
S1[2] = R1[2] & m1[7] & m3[5] & m3[7]; (26)
S1[3] = R1[3] ® m2[6] & m3[5] & m3[7]; (27)

For the second row:

S2[1] = R2[1] & m1[0] @ mO[1] & m3[6]; (28)
S2[2] = R2[2] & m1[0] & m2[7] & m3[6]; (29)
S2[3] = R2[3] @& mO[1] & m2[7] & m3[6]; (30)
For the third row:

S3[1] = R3[1] & m2[0] & m1[1] & mO[0]; (31)
S3[2] = R3[2] & m2[0] & mO[2] & mO[0]; (32)
S3[3] = R3[3] & m1[1] & mO[2] & mO[0]; (33)
For the fourth row

1JSPR | 31

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

S4[1] = R4[1] & mO[7] & m1[6] & m3[4]; (34)
S4[2] = R4[2] @ mO[7] & m2[5] & m3[4]; (35)
S4[3] = R4[3] @® m1[6] & m2[5] & m3[4]; (36)
For the fifth row:

S5[1] = R5[1] @ mo[6] @ m1[5] & m3[3]; (37
S5[2] = R5[2] @ mo[6] & m2[4] & m3[3]; (38)
S5[3] = R5[3] @© m1[5] & m2[4] & m3[3]; (39)
For the sixth row:

S6[1] = R6[1] & mO[5] @ m1[4] & m3[2]; (40)
S6[2] = R6[2] @ mO[5] @ m2[3] @ m3[2]; (41)
S6[3] = R6[3] @ m1[4] & m2[3] ® m3[2]; (42)
For the seventh row:

S7[1] = R7[1] & mO[4] @ m1[3] & m3[1]; (43)
S7[2] = R7[2] & mO0[4] & m2[2] & m3[1]; (44)
S7[3] = R7[3] & m1[3] & m2[2] & m3[1]; (45)
For the eight row:

S8[1] = R8[1] & mO[3] & m1[2] & m3[0]; (46)
S8[2] = R8[2] @ MO[3] & m2[1] & m3[0]; (47)
S8[3] = R8[3] @® m1[2] ® m2[1] & m3[0]; (48)

If all the syndrome bits are equal to zero, then it represents
that the message bits are not corrupted and if anyone of
the syndrome bits in non-zero, then it represents the
message bit(s) are corrupted. These corrupted bits need
correction S0, the message bits are sent to the error
correction part. In the correcting of error part, the location
of error is identified by doing the following calculations:
Suppose if the error is in the third row of the message
organization, then the error position is calculated as:

(S3[3] * (22)) + (S3[2] * (21)) + (S3[0] * (20)); (49)

After the position is calculated, the error corrector negates
the bit corresponding to that position to correct the data
bit. This process is done till all the corrupted bits are
corrected. Now the output of the decoder will be the form
of Fig. 7.

V. SIMULATION RESULTS

The simulation result for the configuration frame and the
parity generator is obtained by using VHDL in XILINX
ISE 8.1i.

VHDL program for parity generator

WWW.ijspr.com

ISSN: 2349-4689

library ieee;

use ieee.std_logic 1164.all;

use ieee.std_logic_unsigned.all:

entity parity_gen is

port(f :in std_logic_vector{15 downto 0);
h :out std_logic_vector(3 downto 0);
v :out std_logic vector(3 downto 0);
d :out std_logic_vector(2 downto 0]
)5

end parity_gen:

architecture df of parity_gen is
begin

process(f)

begin

h{0)==f[15) =xor f{14) =or f{13) xor f{12);
h(1)==f{11) =or f{10) =or f{9) xor f{8):
h(2)==f(7) =or f(6) xor f(3) =or f{4);
h(3)==f(3) =or f{2] xor f{1) =or f{0]:

v(0)==f(13) xor f{11) xor f{7) xor f{3):
v([1)==f(14) =or f{10) xor f{6) xor f{2):
v(2)==f(13) =or f{9) =or f{3) xor f{1);
v(3)==f(12) =or f(8) xor f{4) xor f{0);

d(0)==f[15) =xor f{3) xor f(6) xor £{9) xor f{12) xor f{0);
d(1)==f{11) =or f{14) =or f{2) =or f{3) xor f{8):
d(2)==f(7) =or f{10) =xor f{13) xor f{1) xor f[4):

end process;

end df:

Different circuits have different MUTF improvements.

The proposed multifrequency scrubbing could improve
the MUTF with 1.46x in MEM_CTRL while the proposed
hierarchical scrubbing improves 1.56x. A similar
improvement could be found for the USB_FUNC circuit.
However, the proposed scrubbing methods have
significantly increased in MUTF for FPU and OPEN_FX
especially 146.93x improvement for hierarchical
scrubbing in FPU. This diversity is based on the MTTM
diversity of the test circuits. The MEM_CTRL and the
USB_FUNC circuits have less MTTM than the other two
circuits for most observed failures. If there are too many
frames with very small MTTM, the proposed gradual
replacement algorithm is difficult to balance the MTTD
for all frames because most frames need EMR down while
only a few frames could provide the acceptable EMR up.
On the contrary, the other two circuits have most frames
with big MTTM so the proposed scrubbing methods
provide excellent MUTF improvements. In summary, the
hierarchical scrubbing can improve the MUTF from 1.56%
to 146.93x, which is proportional to the MTTF
improvement.

As for different scrubbing methods, the MUTF of the
proposed scrubbing methods is further improved. The
multifrequency scrubbing method could balance the
MTTD among the different frames to improve the MUTF.

Besides the multifrequency scrubbing, the hierarchical

1JSPR | 32

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

scrubbing uses the rapid scrubbing at the same time to
protect the sensitive configuration frames from two
perspectives, which adopted the FPGA application layer
and the configuration layer. This method could help make
full use of the SEU sensitivity of SEU to improve the
MUTF. The proposed hierarchical scrubbing can improve
the MUTF from 1.56x% to 146.93x.

Vhdl program for configuration frames

library ieee;

use ieeestd logic 1164.all;
entity conf_frame is

port(clk: in std logic

end conf_frame;
architecture df of conf frame is

component parity_gen is

port(£ : in std_logic_vector{15 downto 0);
h : out std logic vector(3 downto 0);
v : out std_logic_vector(3 downto 0);
d : out std_logic_vector(2 downto 0)
)

end component;

signal frame_1:std_logic_vector(15 downto 0):="0010110100101101";
signal frame_2:std logic vector(15 downto 0):="1000110111011100";
signal frame_3:std_logic vector(15 downto 0):="0001110001010110";
signal frame_4:std_logic vector(15 downto 0):="1010111000000101";

signal h1.h2h3h4x1,v2v3rdistd logic vector(3 downto 0):
signal d1,d2,d3,d4:std logic vector(2 downto 0);

begin
uO:parity_gen port map(frame_1,hlv1.d1);
ul:parity_gen port map(frame 2h2v2.d2);

uZ:parity_gen port map(frame_3,h3,v3.d3);
u3iparity_gen port map(frame_4,h4.v4.d4);

end df;

The most previous scrubbing researches focus more on the
improvement Of the mean time to repair (MTTR) such as
rapid scrubbing and fine-grained fast scrubbing [18]. Fine-

& Jconf_frame/dk 1
£ Q Jeonf_frameframe_1 | 0010110100101101 | [SFGFSHIGG]
+ 4 Jconf_frame/frame_2 | 1000110111011100 |FSSEFED
+ 4 Jconf_frame/frame_3 | 0001110001010110 |[ESBFEED

+ 4 Jconf_frame/frame_4 | 1010111000000101 | EFOEEEUAMIF]

& 4 feonf_frame/h1 1111 1111
+ 4 Jconf_frameh2 0111
+ 4 Jconf_frame/h3 0001
& @ Jconf_frame/h4d .na 10
&) @ Jconf_framefvi 0000
4 4 Jconf_framejv2 0010
+ 4 Jconf_framefu3 0111
& 4p [conf_framefvd | 1000
2 4p [eonf_frame/d1 .UDD

4 4 Jconf_framejd2 111
@ 4 fconf_framefd3 100
& 4p [conf_frame/d4 001

=) 4 Jeonf_framefud/f 001011010010110 1 | FEFOFEGFH0} TFFGH

ISSN: 2349-4689

grained fast scrubbing can even significantly gain a
62.32% reduction in MTTR with 10.4% area overhead.
However, in this article, the hierarchical scrubbing
focuses more on the benefit of the MTTR improvement,
for example, MUTF. Based on the EMR [24] and circuit
MTTM characteristic, we do not have to pay equal
attention to all parts of the circuit. Just like we use TMR
to partial circuit [4], we could use different scrubbing
frequency or methods to different priorities. This is the
reason Why compared to other scrubbing methods like
[19] and [22], the proposed scrubbing methods have a
significant improvement in MUTF.

The frame partition result is shown in Fig. 14. The blue
part is the used frames but not the prioritized essential
frames. It includes 383 frames and occupies 93.87% in
OPEN_FX. The orange part denotes the prioritized
essential frames but not the critical frames while the
yellow part denotes the critical frames. Different from the
MEM_CTRL, the OPEN_FX has enough blue frames to
provide MTTD decreased, thus even the proposed multi
frequency scrubbing method has significant improvement.

If the frames MTTM is smaller than the limitation of the
ICAP port speed, the scrubbing method cannot detect and
recover the SEUs in such a short time. This is the reason
why the hierarchical scrubbing still has some uncover
SEUs especially in MEM_CTRL and the USB_FUNC. It
is better to add a soft error mitigation structure like TMR
to the circuit corresponding to these frames, which
extends the MTTM. Another way is to decrease the
frequency of the test circuits, which would also extend the
MTTM the proposed scrubber only occupies less than 1%
of the total FPGA resources. Soft Error Mitigation IP is
the SEU mitigation provided by Xilinx which uses the
conventional traversal scrubbing method.

Fig 13.Configuration Frame Waveform

WWW.ijspr.com

1JSPR | 33

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

19(4,66%)

61470 O933B2N) 116(56.86%)

383(93.8T)

199,32%)
Used ! Essential Prioeitized Essential Critical

(a) (b}

Fig14. Different circuits frames partition according to
MTTM. (a) OPEN_FX frames. (b) MEM_CTRL frames.

The IP function here is also set to just detect and correct
single-bit errors. Multifrequency scrubbing 1 means the
first method which just stores the scrubbing sequence
generated by software directly in BRAM while
multifrequency scrubbing 2 means generating the
sequence in real time by hardware. However, it should be
noted that in addition to the overhead of the scrubber, it
still has some other resources usage, which will depend on
the user circuit.

For rapid scrubbing, it is necessary t0 increase the
overhead associated with user circuit redundancy. For
multifrequency scrubbing, extra BRAM is used for storing
the Weight if the circuit scale is bigger. For the impact on
the circuit frequency, the rapid scrubbing has little impact
on the frequency of the original circuit based on the
timing report [19]. The reason for the dropping of the
circuit frequency is that we reroute the design and use
comparators to collect the error vector that may increase
the critical path of the original circuits. However, the
multifrequency scrubbing method is independent of the
original circuits and has no impact on the original circuit
performance. The scrubber frequency is decided by the
ICAP port with 100 MHz

VI. CONCLUSION

Thisarticle proposes anewhierarchical scrubbingtechnique
thatcanmake fulluseoftheSEU and MBU
sensitivity. Theself-adaptive MTTD enables an effective
scrubbing for different frame priorities based on rapid
scrubbing and proposed multifrequency scrubbing, which
greatly benefits the circuit reliability by adjusting the
scrubbing rate for every configuration frame based on the
model.

The reliability of the system from 1.56 to 146.93.
REFERENCES

[1] E. Dupont, M. Nicolaidis, and P. Rohr, “Embedded
robustness IPs for transient-error-free I1Cs,” IEEE
Des. Test. Comput., vol. 19, no. 3, pp. 54-68,
May2002.

[2] C. Shao, H. Li, J. Fang, and Q. Deng, “An error

WWW.ijspr.com

ISSN: 2349-4689

location and correction method for memory based on
data similarity analysis,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 27, no. 10, pp. 2354-
2364, Oct.2019.

[3] R.Parhi, C. H. Kim, and K. K. Parhi, “Fault-tolerant ripple-
carry binary adder using partial triple modular redundancy
(PTMR),” in Proc. IEEE
Int.Symp.CircuitsSyst.(ISCAS),May2015,pp.41-44.

[4] A. T. Sheikh, A. H. EI-Maleh, M. E. S. Elrabaa, and S. M.
Sait, “A fault tolerance technique for combinational circuits
based on selective- transistor redundancy,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp.
224-237, Jan.2017.

[5] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective
triple modular redundancy (STMR) based single-event
upset (SEU) tolerant synthesis for FPGAs,” IEEE Trans.
Nucl. Sci., vol. 51, no. 5, pp. 2957-2969, Oct.2004.

[6] X. She and N. Li, “Reducing critical configuration bits via
partial TMR for SEU mitigation in FPGAs,” IEEE Trans.
Nucl. Sci., vol. 64, no. 10, pp. 2626-2632, Oct.2017.

[71 Y.Li et al., “Feedback-based low-power soft-error-tolerant
design for dual-modular redundancy,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1585-
1589, Aug.2018.

[8] S.-H. Kang, H.-W. Park, S. Kim, H. Oh, and S. Ha,
“Optimal check- point selection with dual-modular
redundancy hardening,” IEEE Trans. Comput., vol. 64, no.
7, pp. 2036-2048, Jul.2015.

[9] R. Giordano, S. Perrella, V. 1zzo, G. Milluzzo, and A.
Aloisio, “Redundant-configuration scrubbing of SRAM-
based FPGAs,” IEEE Trans.Nucl.Sci.,vol.64,n0.9,pp.2497-
2504,Sep.2017.

[10] M. S. Reorda, L. Sterpone, and A. Ullah, “An error-
detection and self- repairing method for dynamically and
partially reconfigurable systems,” in Proc. 18TH IEEE Eur.
TEST Symp. (ETS), May 2013,pp. 1-7.

[11] M. Ebrahimi, P. M. B. Rao, R. Seyyedi, and M. B. Tahoori,
“Low- cost multiple bit upset correction in SRAM-based
FPGA configuration frames,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 3, pp. 932-943, Mar.2016.

[12] S. Mandal, R. Paul, S. Sau, A. Chakrabarti, and S.
Chattopadhyay, “Anovel method forsofterror
mitigationinFPGAusingmodified matrix
code,”|IEEEEmbedded Syst.Lett.,vol.8,n0.4,pp.65—
68,Dec.2016.

[13] A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin,
“A hybrid approach to FPGA configuration scrubbing,”
IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 497-503,
Jan.2017.

[14] C. Bolchini, D. Quarta, and M. D. Santambrogio, “SEU
mitigation for sram-based FPGAs through dynamic partial
reconfiguration,” in Proc. 17th Great Lakes Symp. VLSI
(GLSVLSI), 2007, pp.55-60.

[15] M. Vavouras and C.-S. Bouganis, “Area-driven partial

IJSPR | 34

INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (l1JSPR)

Issue 184, Volume 79, Number 6, June 2021

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

reconfiguration for SEU mitigation on SRAM-based
FPGAs,” in Proc. Int. Conf. ReConFigurable Comput.
FPGAs (ReConFig), Nov. 2016, pp.1-6.

G. L. Nazar, L. P.Santos, and L. Carro, “Accelerated FPGA
repair throughshifted scrubbing,”inProc.23rdInt.Conf.Field
Program.Log. Appl., Sep. 2013, pp.1-6.

L. Pereira-Santos, G. L. Nazar, and L. Carro, “Exploring
redundancy granularities to repair real-time FPGA-based
systems,” Microprocessors Microsyst., vol. 51, pp. 264—
274, Jun.2017.

G. L. Nazar, L. P. Santos, and L. Carro, “Fine-grained fast
field- programmable gate array scrubbing,” IEEE Trans.
Very Large Scale Integr.(VLSI)Syst.,vol.23,n0.5,pp.893-
904,May2015.

S. Zheng et al., “A rapid scrubbing technique for SEU
mitigation on SRAM-based FPGAs,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2019, pp.1-5.

I. Herrera-Alzu and M. Lopez-Vallejo, “System design
framework and methodology for xilinx virtex FPGA
configuration scrubbers,” IEEE Trans. Nucl. Sci., vol. 61,
no. 1, pp. 619-629, Feh.2014.

S. Fouad, F. Ghaffari, M. E. A. Benkhelifa, and B. Granado,
“Context- aware resources placement for SRAM-based
FPGA to minimize check- point/recovery overhead,” in
Proc. Int. Conf. ReConFigurable Comput. FPGAs
(ReConFig), Dec. 2014,pp. 1-6.

M. Li, S. Wang, N. Ma, and Y.Peng, “SRAM FPGAs single
event upsets detection method based on selective readback,”
in Proc. Prognostics Syst.Health Manage.Conf.(PHM-
Harbin),Jul.2017,pp.1-7.

S.Krishnaswamy,S.M.Plaza,l.L.Markov,andJ.P.Hayes,“Enh
ancing design robustness with reliability-aware resynthesis
and logic simula- tion,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 2007, pp.149-154.

H. Asadi and M. B. Tahoori, “Analytical techniques for soft
error rate modeling and mitigation of FPGA-based
designs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 15, no. 12, pp. 1320-1331, Dec.2007.

S. Liu et al., “Comparison of the susceptibility to soft errors
of SRAM- based FPGAerror correction codes
implementations,”|EEETrans.Nucl. Sci., vol. 59, no. 3, pp.
619-624, Jun.2012.

C.-A. Mao, Y. Xie, X. Wei, Y.-Z. Xie, and H. Chen,
“FPGA-based fault injection design for16K-
pointFFTprocessor,”J.Eng.,vol.2019,n0.21, pp. 7994-7997,
Nov.2019.

N. Jing et al., “Quantitative SEU fault evaluation for
SRAM-based FPGA architectures and synthesis
algorithms,” in Proc. 21st Int. Conf. Field

Program.Log.Appl.,Sep.2011,pp.282-285.

Y. Xie, H. Chen, Y.-Z. Xie, C.-A. Mao, and B.-Y. Li, “An
automated FPGA-based fault injection platform for
granularly-pipelined fault tol- erant CORDIC,” in Proc. Int.
Conf. Field-Program. Technol. (FPT), Dec. 2018, pp.370-
373.

WWW.ijspr.com

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

ISSN: 2349-4689

N. K. C. Das, M. S. George, and P. Jaya, “Incorporating
weighted round robin in honeybee algorithm for enhanced
load balancing in cloud environment,” in Proc. Int. Conf.
Commun. Signal Process. (ICCSP), Apr. 2017, pp.0384-
0389.

K. W. Ross and D. D. Yao, “Optimal load balancing and
scheduling in a distributed computer system,” J. ACM, vol.
38, no. 3, pp. 676-689, Jul.1991.

B. Alam, M. N. Doja, and R. Biswas, “Finding time
quantum of round robin CPU scheduling algorithm using
fuzzy logic,” in Proc. Int. Conf. Comput. Electr. Eng., Dec.
2008, pp.795-798.

W. Wang and G. Casale, “Evaluating weighted round robin
load balanc- ing for cloud Web services,” in Proc. 16th Int.
Symp. Symbolic Numeric
AlgorithmsSci.Comput.,Sep.2014,pp.393-400.

A. M. Keller and M. J. Wirthlin, “Benefits of
complementary SEU mitigation for the LEON3 soft
processor on SRAM-based FPGAs,”

IEEETrans.Nucl.Sci.,vol.64,n0.1,pp.519-528,Jan.2017.

Z. Feng, N. Jing, and L. He, “IPF: In-place X-Filling
algorithm for the reliability of modern FPGAs,” IEEE
Trans. Very Large Scale Integr.
(VLSI)Syst.,vol.22,n0.10,pp.2226-2229,0c¢t.2014.

L. A. C. Benites et al., “Reliability calculation with respect
to functional failures induced byradiationinTMRarmcortex-
MOsoft-core embedded into SRAM-based FPGA,” IEEE
Trans. Nucl. Sci., vol. 66, no. 7, pp. 1433-1440, Jul.2019.

L. Sterpone, M. Violante, and S. Rezgui, “An analysis
based on fault injection of hardening techniques for SRAM-
based FPGAs,” IEEE Trans.Nucl.Sci.,vol.53,n0.4,pp.2054—
2059,Aug.2006.

F. Benevenuti and F. L. Kastensmidt, “Comparing
exhaustive and random fault injection methods for
configuration memory on SRAM- based

FPGAs,”inProc.IEEELatinAmer. Test
Symp.(LATS),Mar.2019, pp.1-6.

Guanghui He,Sijie Zheng , and Naifeng Jing “A
Hierarchical Scrubbing Technique for SEU Mitigation on
SRAM-Based FPGAS”

1JSPR | 35

